FILE COPY

ESD-TR-74-314 MTR-2677, Vol. 10

vI9YT7 -

’ REMOTE-TERMINAL EMULATOR
(DESIGN VERIFICATION MODEL) — USER'S MANUAL

T. Suyemoto

FEBRUARY 1975

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
Hanscom Air Force Base, Bedford, Massachusetts

Project No. 572D

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Contract No. F19628-75-C-0001

ADA 0Ok 73

v/

,

When U.S. Government drawings, specifications,
or other data are used for any purpose other
than a definitely related government procurement
operation, the government thereby incurs no
responsibitity nor any obligation whatsoever; and
the fact that the government may have formu-
lated, furnished, or in any way supplied the said
drawings, specifications, or other data is not to be
regarded by implication or otherwise, as in any
manner licensing the holder or any other person
or corporation, or conveying any rights or per-
mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy. J

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for
publication,

. v . Equ{./A—f
//L 1i¢¢ / 5 & L e - \(d

JAMES S, CAMERON, Maj, USAF MARVIN E. BROOKING
Project Engineer Project Officer

FOR THE COMMANDER

Oebed | lne

ROBERTF|J. LATINA, Colonel, USAF
Directot.Jof ADPE Selection

Deputy for Command and Management Systems

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
ESD-TR-74-314
4 TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

REMOTE-TERMINAL EMULATOR (DESIGN
VERIFICATION MODEL) — USER'S MANUAL

6. PERFORMING ORG. REPORT NUMBER

MTR-2677, Vol. 10

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(S)
T. Suyemoto F19628-75-C-0001
9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. i:giR&Ax ERLKEMENTT. PROBJEE;:ST' TASK
. o] UNI NUM
The MITRE Corporation
Box 208 Project No. 572D
Bedford, MA 01730
(B CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Deputy for Command and Management Systems February 1975
Electronic Systems Division, AFSC V3N OMBEROIRIGIAGE:S
Hanscom Air Force Base, Bedford, MA 01731 215
14 MONITORING AGENCY NAME & ADDRESS(if ditterent from Controfting Oftice) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
15a. DECL ASSIFICATION DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (ol this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

DESIGN VERIFICATION MODEL
REMOTE-TERMINAL EMULATOR

20 ABSTRACT (Continue on reverse side If necessary and identify by block number)

The Remote-Terminal Emulator is a minicomputer-based system which generates
message traffic for use in testing and evaluating large-scale, multi-terminal computer
systems. This series of reports will describe the two Design Verification Models

that were developed on Data General NOVA 800 minicomputers. This volume is a
user's manual which contains the information necessary to prepare and run the soft-
ware portions of the Remote-Terminal Emulator.

DD , 55", 1473 EDITION OF ! NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(W! = Drt« Entered)

PREFACE

The Remote-Terminal Emulator is a minicomputer-based system
which generates message traffic for use in testing and evaluating
large-scale, on-line computer systems. In real-time testing, it
emulates the actions of a collection of operators, terminals, and,
depending upon configuration, modems. In 1972 and early 1973, two
Design Verification Models (DVM) of the emulator were developed by
The MITRE Corporation under the sponsorship of the Air Force
Directorate of Automatic Data Processing Equipment Selection (MCS).
The fixed-site system, which isused primarily for program and scenario
development, is located at MITRE/Bedford and interfaces with the
computer system under test (SUT) through the switched telephone net-
work., The on-site system, which is used primarily for detailed
emulator test and evaluation, is representative of the equipment
planned for operational use in future computer procurements. This
system, which is moved to each SUT site, interfaces through cables

directly with the SUT's communication line adapters.

The primary hardware components of each of these systems are a
Data General NOVA 800 minicomputer, a fixed-head disk, a magnetic tape
unit, a control teletype, and an appropriate emulator/SUT interface
unit., Both DVM's have sufficient hardware to emulate up to 16 low-
speed interactive terminals. The on-site DVM also has hardware to
emulate eight additional terminals or terminal networks by the use of
high-speed synchronous line adapters and associated circuitry. The
primary software components that have been developed for this project
consist of the Macro Preprocessor, the Scenario Assembler, the Real-
Time Executive, the Scenario Interpreter and the Data Reduction

Program,

The common denominator of remote-terminal emulation is the
scenario, which is a program that controls the actions to be taken
by the emulator in emulating a given device and mix of devices. The
scenario defines the queries (system commands, input data, and
control characters) to be sent to the SUT, how SUT responses are to
be processed, and other details of the test to be conducted. The
Macro Preprocessor is a general purpose support program that provides
a basic macro capability to aid in scenario writing and which was
also used in emulator program development. In the scenario develop-
ment process, the Scenario Assembler is used to convert external
(symbolic) scenarios to internal (absolute) scenarios which are
tailored to a specific terminal type and to specific data communica-
tions control procedures. Both the Macro Preprocessor and the
Scenario Assembler run under the Data General Disk Operating System
(DOS). 1In real-time testing, internal scenarios are brought into
core from disk and are processed by the Scenario Interpreter which
runs under the Real-Time Executive, All messages sent to and
received from the SUT, as well as messages describing other actions
of the emulator, can be time-tagged and logged on magnetic tape.
Upon completion of the test, these data are processed in various
fashions by the Data Reduction program (which also runs under DOS)
to produce scenario trace data and various statistics on the

performance and utilization of both the emulator and the SUT,

This document is part of a series of reports which will describe
the design, implementation and use of the two Design Verification

Models. The titles of the reports in the series are as follows:

Volume Title
1 Introduction and Summary
2 Scenarios and Data Structures
3 Macro Preprocessor
4 Scenario Assembler

Volume Title

5 Scenario Interpreter

6 Real-Time Executive

7 Data Reduction Program
8 Hardware

9 Support Software

10 User's Manual

It is suggested that the reader become familiar ‘with the emulator
concepts and terminology presented in Volume 1 preparatory to reading

other volumes in the series.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS
LIST OF TABLES

SECTION I INTRODUCTION
SECTION II DOS AND SUPPORT SOFTWARE
’ 44 DOS
Loading DOS

Executing Under DOS
SUPPORT SOFTWARE

Utilities

File Management

Programming Aids

SECTION III MACRO PROCESSOR
INTRODUCTION
PREPARATION AND USE OF MACROS
Macro Names
Macro Body
Macro Definition
Macro Call
Parameter Substitution
Label Generation
Character Set
Features
Special Characters
Quotes
Master Macro Directory
Notes and Restrictions

SYSTEM FLOW

12

14
14
14
15
16
16
18
19

20
20
20
20
21
21
21
22
23
25
25
25
25
26
27
28

TABLE OF CONTENTS (Continued)

SECTION III (Cont. OPERATING PROCEDURES
SSUB
Input File
Output File
MACDEF
Input File
Output File
Output Messages
SECTION IV SCENARIO ASSEMBLEK
INTRODUCTION
SYSTEM FLOW
OPERATING PROCEDURES
Preparing Files
External Scenario
Program Files
Executing Assembler
OUTPUT
Internal Scenario
Optional Listings

Output Messages

SECTION V EQUIPMENT TABLE
INTRODUCTION
GENERATION
REQUIREMENTS AND CONVENTIONS
FUNCTION

SECTION VI REAL-TIME EMULATOR SYSTEM
GENERATION
INTRODUCTION
SSUB

50
50
50
.
74

80
80
80

SECTION VI (Cont.)

SECTION VII

SECTION VIII

TABLE OF CONTENTS (Continued)

ASM
RLDR
MKABS

Disk Requirements

REAL-TIME EMULATOR
INTRODUCTION
SYSTEM FLOW
OPERATING INSTRUCTIONS
Startup
Control TTY Inputs
Run ID
Commands
CANCEL Input
BREAK Output
Responses
Shutdown
ERROR MESSAGES
DEVICE STATUS
RING COUNTERS
RESPONSE HANDLING AND LOGGING
DIGITAL I/0
STORAGE REQUIREMENTS
MISCELLANEOUS NOTES
PANIC CODES AND ACTIONS

DATA REDUCTION PROGRAM
INTRODUCTION
SYSTEM FLOW
OPERATING PROCEDURES
Input Message

6

87
87
87
87
89
90
90
90
90
91
91
91
92
99
101
104
106
113
116
117

123
123
123
125
125

TABLE OF CONTENTS (Continued)

Page

SECTION VIII (Cont.) Command Interpreter 126

Interactive Mode 126

Switch Mode 128

Summaries 131

Brief Summary 131

Detailed Summary .35

Listings 136

Octal Tape 136

Actual Times 137

Time Intervals 137

Relative Times 138

ERRORS 138

SAVING TEST DATA 140

Program Description 140

Input Message 141

Operation 141

Errors 143

SECTION IX EXECUTION TIMES 145

REAL-TIME INSTRUCTIONS 145

NON-REAL TIME PROGRAMS 159

SSUB 159

MACDEF 160

CVT 160

DATAR 161

MASTR 161

REFERENCES 163

APPENDIX I CONVERSION CODES FOR IBM 2741 164
APPENDIX II SAMPLE LISTINGS FROM SCENARIO

ASSEMBLER 168

7

TABLE OF CONTENTS (Concluded)

Page
APPENDIX III LISTING OF EQUIP. RB 174
APPENDIX IV DATAR LISTINGS 188
APPENDIX V EXAMPLE OF TELETYPE LISTING FOR AN
EMULATION RUN 196
APPENDIX VI TIMING SAMPLES FOR NON-REAL TIME
PROGRAMS 198

Figure Number

A N W

10

11

12
13

14
15
16
17
18

19
20
21

LIST OF ILLUSTRATIONS

SSUB System Flow

MACDEF System Flow

System Flow of the Scenario Assembler

External Scenario Format

Equipment Table Macros

File EQ of Equipment Table (Macros not
Expanded)

Potion of File EQUIP of Equipment Table
(Macros Expanded)

Portion of File EQUIP.RB, Assembled
Equipment Table

ET Entries for DCM Devices for Lab System

ET Entries for Asynchronous Devices for
64-1ine Field Test System

ET Entries for Asynchronous Devices for
16-Line Field Test System

Equipment Table Hierarchy

Example of Device Communication Through
Scenarios

System Flow for Real-Time Emulator

State Transition Diagram

Ring Counter Changes

Digital I/0 Connections

Normal Interface Rack Wiring for
Asynchronous Devices

Normal Asynchronous Correspondence

Macro Definitions for Digital I/0

HANDSHAKE Scenario

Page

29
30
37
39
52

56

60

65
69

70

71
75

78
88
100
102
109

110
112
112
112

Figure Number

22
23

24
25
26
27
28
29
30
31
32
33

34

35

LIST OF ILLUSTRATIONS (Concluded)

Example of Panic Message

General System Flow of Data Reduction

Program
Interactive Tree Diagram for DATAR
Switch Tree Diagram for DATAR
Brief Summary Output Format
Detailed Summary Output Format
Histogram Output Format
Octal Tape Output Format
Actual Time Output Format
Time Interval Output Format
Relative Time Output Format
Fortran Cost Scenario with Macros
not Expanded
Scenarios for Fortran Cost Problem
with Macros Expanded
Macro Libraries for Fortran Cost

Problem

10

124
129
132
189
190
191
192
193
194
195

199

201

212

Table Number

I
I1
III
IV

VI

VII

VIII
IX

X1

XTI

XIII

XIv

XVII
XVIII
XIX

XXI

XXTI
XXIII

LIST OF TABLES

Common Utility Programs

Common File Management Commands

Output Messages for Macro Processor

Available Codes for Conversion

Available Codes for SOM/EOM

Output Messages for Scenario Assembler

Input File Names for Emulator System

Inputs to Relocatable Loader

Disk Requirements for Emulator System

Error Message Classes for Scenario
Interpreter

Error Messages for Scenario Interpreter

Core Storage Requirements for Scenario
Interpreter

Core Storage Requirements for Real-Time
Exec

RTOS Panic Codes

Interactive Requests and Responses for
DATAR

Option and Suboption Switches for DATAR

Record Type Switches

Switch Combinations and Valid Inputs

DATAR Error Message File (ERFILE)

MASTR Error Message File

Real-Time Scenario Instruction Execution
Times

Control Characters for IBM 2741 Terminal

Conversion Code Table used for IBM 2741

Terminal

11

93
94

114

115
L19

127
130
133
133
139
144

146
165

166

SECTION I

INTRODUCTION

The Remote-Terminal Emulator consists of a combination of hard-
ware components and software packages designed to generate message
traffic for use in testing and evaluating on-line computer systems.

The hardware configurations for both the fixed-site and on-site systems
are discussed in Volume 8 of this series. This user's manual presents
the user information necessary to prepare and run the software portions
of the system. Included here are excerpts from previous volumes as
well as additional material required for running the Remote-Terminal

Emulator.

The common denominator of remote-terminal emulation is the
scenario, which is a program that controls the actions to be taken by
the emulator in emulating a given device or mix of devices. A scenario
is formed by a series of scenario instructions which determine the
queries to be sent to a SUT, how responses are to be handled, and the
various control functions of a test. The command is a special in-
struction which exerts gross control over emulator actions, and is
the only means by which the user can exert external control during an
emulation run. Both instructions and commands are described in de-

tail in Sections IV and V of Volume 2 of this series.

This paper is organized as a logical presentation of steps needed
for preparation, execution, and data reduction of an emulator run.
Section II describes both the NOVA Disk Operating System (DOS) as it
applies to the Emulator, as well as the system support software which
may be applicable in most phases of emulation. The macro processing
function is described in Section III and the assembly function is
presented in Section IV. These two functions prepare the scenario

for the real-time run. Sections V and VI respectively deal with

162

preparing the Equipment Table, and following this, building an emulator
system. The operating instructions and other information necessary
for execution of a real-time emulation run are presented in Section
VII. The final phase of an emulator run, data reduction, is discussed
in Section VIII. An example of the on-line teletype output for all

processing steps for a single emulation run is given in Appendix V.
Section IX contains timing information for both the real-time and

non-real time functions of the emulator.

13

SECTION II

DOS AND SUPPORT SOFTWARE

Dos

All of the non-real time programs included in the Emulator system
run under Revision 5 of Data General's Disk Operating System (DOS).
The support software described in Volume 9 of this series also operates
under control of DOS. A complete description of DOS can be found in
Reference 1. Under DOS a carriage return and a line feed are echoed
back when the RETURN key is depressed. In this document the symbolJ
is used to denote the depression of the RETURN key and the echo back

of both the carriage return and line feed.

Loading DOS

The DOS system can be loaded into core from tape, or, if it al-
ready exists on disk, it can be loaded from there. To load from tape,

the following sequence should be performed:

(1) Turn on CPU, disk, tape drive, and system teletype;

(2) Mount the system tape; press LOAD to advance tape
to ready position;

(3) Set panel data switches to 100022;

(4) Raise the RESET panel switch and then raise the PROGRAM
LOAD panel switch;

(5) The remainder of the process involves the following
activity on the system teletype. The underlined portion
is what is to be entered by the user. The non-underlined

portion is the response of the system.

14

FULL(#) OR PARTIAL(1)? @
R

XFER MI@:1 SYS.SV
R

CHATR SYS.SV SP

= J
INSTALL SYS.SV

N L
LOAD/A MT@:2

FILE ALREADY EXISTS, FILE: SYS.DR
FILE ALREADY EXISTS, FILE: MAP.DR
R

p)

To load DOS from disk the following sequence should be performed:
(1) Turn on CPU, disk, and TTY;
(2) Set panel data switches to 100020;
(3) Raise the RESET panel switch and then raise the PROGRAM
LOAD panel switch;
(4) The system will respond as follows:
DOS REV @5
Press the continue panel switch and DOS responds:
R
There is not enough disk space on the present NOVA to accommodate
the complete Disk Operating System plus the emulator system. There-
fore, to delete from disk all DOS files which are not essential to
preparing or executing an emulator run, the following command line
should be typed directly after loading DOS.
@REMALG/
This frees space on the disk to allow for the emulator system and

scenarios, which can then be loaded.

Executing Under DOS

Programs which operate under control of DOS are executed in re-

sponse to a user input request entered at the system teletype. The

15

input message is called a command line and is processed by an execut-
able program called the Command Line Interpreter (CLI). The CLI
indicates to the user that it is ready to accept commands by typing
the ready message, R). The user enters a command by typing a line
and depressing the RETURN key. When execution of a program running
under DOS is completed, control is returned to the CLI.

When operating under DOS, depressing CTRL and A simultaneously
on the system teletype causes an immediate interrupt to the executing
program, regardless of the program status. This can be useful, for
instance, to discontinue a run when errors have been detected. The
word INT is typed by the CLI upon recognition of the CTRL-A break,
and control is returned to the CLI which then types R.

SUPPORT SOFTWARE

All support software programs operate under control of DOS. They
are described in detail in Volume 9 of this series. A brief presenta-
tion of operating instructions for the most commonly needed functions

is given here. This section does not include all available programs.

Utilities
The utilities transfer data from one DOS file to another. Note

that all peripheral devices are treated as files. Table I below shows
some methods for moving data. Where appropriate, filenames for peri-
pherals may be used for input or output files to the utility programs.
These names include:

$CDR card reader input

ST teletype keyboard input

$TTO teletype printer output

SLPT line printer output

16

Table I

Common Utility Programs

Operation CLI Input Message
Card to disk XFER/A S$CDR filename)
LXFER $CDR filenamez2
Tape to disk LOAD MT@:x Filenamel filename2..}
Disk to line printer PRINT filenamel eee)
PRINTL filenamel ..]J
Disk to tape DUMP MIP:x filenamel wee)

The switch /A on the XFER command causes the data to be input from the
card reader ($CDR) as ASCII data with a carriage return inserted at
the end of the text on a card to denote an end of line. Without the
switch the input is transferred sequentially without alteration. The
LXFER program is MITRE generated and provides the capability to con-
vert Hollerith data to ASCII (the code of the NOVA), including control
characters and lower case. It also permits entry of any 8-bit value

via card input. A description of the program is given in Volume 9.

Both the LOAD and DUMP commands have an additional option, /V,
which causes the names of the files to be verified on the teletype.
Also in these commands MI@® signifies transport @ of the tape drive,
and x designates which file on the tape is selected. The brackets
indicate optional information; if no filename is specified, all non-
permanent files are moved. The PRINT program lists the designated

file(s) on the line printer without either a title or line numbers,

17

and truncates a line after 80 characters. The PRINTL program, however,
lists the file(s) with both a title and line numbers, and prints lines

longer than 76 characters on successive lines without associating a

new line number.

File Management

Several DOS programs may be useful in handling files containing
scenarios or libraries. Table II shows some of the more common

commands.

Table II

Common File Management Commands

Operation CLI Input Message

Delete file(s) from directory DELETE filenamel ..\2
and free space

Change filename RENAME oldfilename newfilenam%l
Concatenate copies of files APPEND newfilename filenamel ..d
to produce a new file

List number of disk blocks in DISKJ
use and number available

attributes of files in

List names, byte count, and LIST [filenamel ..22
directory

The specific command DELETE*.* deletes from disk all files which are
not permanent. The LIST command with no parameters causes a listing
of the byte count for each file on the teletype. In the option /L is
used, the listing is printed on the line printer. If the option /A
is used, all permanent files are also listed. If specific files are

designated, only those specified are listed.

18

Programming Aids

The two programs most often employed by an Emulator user are the
EDIT and OEDIT (octal edit) programs. The EDIT program is used to
build a new source file or edit an existing one. This program is
described in full in Reference 2. The octal editor is used to examine
and/or modify, in octal, any location in any disk file. A complete

description of this program can be found in Reference 1.

19

SECTION III

MACRO PROCESSOR

INTRODUCTION

The basic function of a macro processor is text substitution,
where a name appearing in the source code is replaced by an associated
string of characters. A general purpose macro capability, including
a macro library generator (MACDEF) and a macro processor (SSUB), was
developed on the NOVA 800. One of the main purposes of this software
is to facilitate scenario writing by (1) providing a one-to-many
statement capability and (2) allowing for substitution of parameter
values at the external scenario level. This permits the scenario
writer to include common pieces of code in different scenarios and
to change subscenario calls to in-line code, or vice-versa. Another
use for the macro capability is in writing code in NOVA Assembly
language, which is the means used for generating an emulator Equipment

Table.

Macros may be created and saved separately in a macro library
by using the MACDEF program; or they may be defined in the source
file itself during execution of SSUB. Both MACDEF and SSUB are
written in Extended ALGOL and operate in 24K core under control of
DOS. A description of the design and implementation of the Macro

Processor can be found in Volume 3 of this series of reports.

PREPARATION AND USE OF MACROS

The discussion of macros presented here applies to all macros

whether they are defined in a library, or directly in the source code.
Macro Names

Macro names are identifiers consisting of ten or less alpha-

numeric characters.
20

Macro Body

In its simplest form a macro body consists of a string of ASCII
characters to replace every occurrence of the macro name in the

source data. No extra spaces are inserted.

Macro Definition

A macro definition associates an identifier (the macro name)
with a string of text (the macro body). Format for a macro definition

is as follows:

MDEF macroname (number of arguments)
macro body

MEND

The literals MDEF and MEND are left-adjusted on separate lines (or
cards). The macro body consists of all characters beginning with
the next line after MDEF up to, but not including, the carriage
return before the MEND. If the macro has no arguments, the initial

line may be terminated after the macro name.
Macro Call

A macro call is any reference to a macro name in the source

file. Formats for a call are:

macroname (arg l,arg 2...) if the macro has arguments.

macroname if there are no arguments.

Arguments are separated by commas and enclosed in parentheses.

21

Example 1: Simple Substitution

Source Data: ALGOL Program

Macro Definition Source Code Output Code

MDEF DIGIT IF DIGIT IF ((CHAR>=60R8) AND
((CHAR>=60R8) AND THEN GO TO (CHAR<=71R8))
(CHAR<=71R8)) EXIT; THEN GO TO

MEND EXIT;

Parameter Substitution

Macro bodies may contain formal parameters which will be re-
placed by actual parameters (arguments) in a macro call. Up to 9
formal parameters can be used in a macro definition. Each formal
parameter is specified by a $ (dollar sign) followed by a digit n
where 0<n<10. When the macro name and its arguments are encountered
by SSUB in the source code, the first positional argument will be
substituted for the formal parameter $1; the second, for $2, etc.

Formal parameters may be passed as macro arguments.

Example 2: Use of Parameters

Source Data: NOVA Assembly

Macro Definition Source Code Output Code
MDEF LDI (2) LDI (3,50) JMP .+2;MLDI (R3,50)
JMP .+2;MLDI (R$1,$2) 50
$2 LDA 3,.-1
LDA $1,.-1
MEND

22

Macro calls may be nested within arguments and within macro bodies.

Example 3:

Nested Macro Call in Macro Argument !

Source Language:

NOVA Assembly Language

Macro Definitions

Source Code

Output Code

MDEF LDI (2) LDI (3, DEC (50)) IMP . +2
JMP .+2 .RDX 10
$2 50

LDA $1,.-1 .RDX 8
MEND EDR 4, .=1
MDEF DEC (1)

+RDX 10

$1

.RDX 8

MEND
Label Generation (The TAIL Function)

To insure that labels appearing within macro bodies will not be

multiply defined, a special function $T is provided.

to $T is replaced by a numeric value.

Each reference

This value is unique for each

macro call, but remains constant for all $T references within a macro

body.

$T may be passed one level as a macro argument.

Example 4:

Use of ST Function

Source Data:

Scenario Assembly Code for Login Sequence

Macro Definitions

Source Code

Output Code

MDEF FINDLIT (1)
L FLST

Rl'

S FLST $1

MEND

ALLOCREGS 10
FINDLIT (6000)
QCESDM002

FINDLIT (PASSWORD)
QXXXX

FINDLIT (SYSTEM?)

ALLOGREGS 10
L FL3

Rll

S FL3 6000
QCESDMO002

L FL4

Rll

28

Example 4:

Use of $T Function (Concluded)

Source Data:

Scenario Assembly Code for Login Sequence

Macro Definitions

Source Code

Output Code

S FL4 PASSWORD
QXXXX

L FL5

R"
S FL5 SYSTEM?

Example 5:

Nested Macro Calls in Macro Body

Source Data:

Scenario Assembly Code

Macro Definitions

Source Code

Output Code

MDEF FINDLIT (1)
L FL$T

R M

S FLST $1

MEND

MDEF BACKUP

QB

REDY

MEND

MDEF REDY
FINDLIT (READY)
MEND

MDEF LIST
%PRINT FILE#*
BACKUP

REDY

QPRINT ; *

EOF

MEND

MDEF EOF

FINDLIT (FILE)
MEND

LIST

PRINT FILE
QB

L FL40

R"

S FL40 READY
QPRINT; *

L FL42

R'l

S FL42 FILE

24

Character Set

Source input to both SSUB and MACDEF normally consists of ASCII
characters. The results of using non-ASCII characters are not de-
fined, although in the current version most values are processed
correctly. Two known exceptions are the eight-bit values 0 and 1,
which are used internally by SSUB and MACDEF and should never be

included in source code for either program.
Features

Special Characters

$ The dollar sign is used for three special
functions performed by SSUB. It is illegal
to use it otherwise in normal source data,

other than in a quote string.

ST specifies the TAIL function. $Q
specifies the quote function. $digit

is used to specify formal parameters.

A single quote delimits a string not
to be scanned by SSUB. The string is

passed with quotes.

QO Parentheses are used to enclose arguments
in a macro call. Parentheses may appear

elsewhere 1in source data.

. Commas are used to separate macro arguments.
They may also appear elsewhere in source

data.

QUO tes

When a string of characters is enclosed in single quotes, it is

passed on (including quotes) without being scanned.

25

$Q is a special macro function which can be used to pass a string
of characters including commas, leading blanks, etc., in macro argu-
ments. $Q is followed by a string delimited at the beginning and end
by a character selected by the user. Delimiter characters may be
any ASCII characters except those listed above in the special group
and the space character. The expansion of $Q is the string without
delimiters. The string itself will be scanned when it is substituted

for its corresponding formal parameters.

Example 6: $Q Function

Source Data: Scenario Assembly Code

Macro Definition Source Code Output Code
MDEF INSTR (1) INSTR ($Q*LDA 3,A%) LDA 3,A
$1
MEND

Master Macro Directory

As part of its initialization, SSUB creates a master directory
which is effectively the sequential concatenation of all library
directories in left-to-right order as they appear in the DOS command
line. Later, if more definitions are encountered in the source file,
they are added to the master directory. During an SSUB run names
are never deleted,and no name duplication check is made. The directory
is ordered so that if duplicate macro names occur, the text of the

macro most recently added to the directory will be used.

26

Notes and Restrictions

1. Single quote strings are limited to 1000 characters.

2, In an SSUB run the total of all macros in the
libraries and all macros defined during the run

itself cannot exceed 160.
3. Each macro library is limited to 100 macros.
4, $Q is legal only in macro arguments.

5. The identifiers MDEF and MEND are reserved and
cannot be used as macro names, or appear in any
source data except in their normal use in macro

definitions.
6. The file name TSUB.MB is reserved.

7. The system error message ''stack overflow'" usually
indicates a recursion loop in macro substitution.

Example:

MDEF OR
coM 1,1
AND 1, 2 s PERFORMS LOGICAL OR

MEND

When the macro OR is called, infinite recursion will
occur because of the "OR" in the comment within the

macro body.

9. If an unsuccessful MACDEF run has been made, the .ML
file should be deleted before MACDEF is rerun with the
same name. Otherwise a new file is not created and the

new information is written over the old information. If

27

this occurs, and if the new file is to be smaller than
the old file, whatever has not been overwritten will re-

main at the end of the file.

SYSTEM FLOW

Overall system flows for SSUB and MACDEF are shown in Figure 1
and Figure 2, respectively. Operations taking place on the NOVA are
listed at the bottom of the figures with the required DOS commands.

OPERATING PROCEDURES

SSUB

SSUB is the actual macro processing program; it performs the macro
substitutions. Input to SSUB consists of a source file and up to
four macro libraries. SSUB copies the source file into an output
file. While copying, it scans the source data for macro definitions
and references to macro names (macro calls). When a macro name is
detected, the text of the specified macro is copied into the output
file replacing the macro name. Macros may have arguments which
modify the text of the macro as it is copied. For SSUB, modification
consists simply of replacing formal parameter references contained

in the macro body by actual parameters supplied as arguments.
To use the SSUB program the following steps should be performed:
1. Load the SSUB save file.
2. Create or load the source file.
3. Load any macro library files to be used.
4, Ready the line printer.
5. Enter the following command at the teletype:

SSUB input-file output-file library—nameﬁz

28

PREPARE
SOURCE FILE

. LOAD
SsuB
PROGRAM

C

) 3. READ IN SSUB.SV
{ INPUTFILE
(SOURCE DECK libl. ML

MACRO

LIBRARIES

ry
EXECUTE SSUB

ERROR MESSAGES
AND LISTS OF
MACROS DEFINED

OUTPUT FILE IN INPUT FILE.
N

I. LOAD LIBRARY FILE LOAD MTO: X libl. ML Iib2.Ml.)

2. LOAD PROGRAM FILE LOAD MTO: X SSUB.SV)

3. LOAD INPUT FILE XFER/A $CDR INPUTFILE)

4. EXECUTE SSuUB SSUB INPUTFILE OUTPUTFILE libl Iibz)

UP TO 4 LIBRARIES ARE ALLOWED ALTHOUGH ONLY 2 ARE SHOWN ABOVE.

o0
©
o
L 4
1
<

Figure |, SSUB SYSTEM FLOW

29

PREPARE
MACRO
DEFINITIONS

D

LIBNAME
MACDEF. SV

\/

I. READ IN
MACRO
DEFINITION
DECK

MACDEF. SV

MACRO d
DEFINITIONS

3. EXECUTE
MACDEF

ERROR MESSAGES
AND LIST OF

DEFINED MACROS

libname. ML

M i

4. SAVE
LIBRARY ON
TAPE

I. LOAD MACDEF PROGRAM LOAD MTO: X MACDEF.SV)
2. LOAD MACRO DEFINITION DECK XFER/A $CDR libnomo‘)
3. EXECUTE MACDEF MACDEF Ilbname

4. SAVE MACRO LIBRARY DUMP MTO:X llbname. ML

Figure 2. MACDEF SYSTEM FLOW

30

Do not include the .ML after library names. Up to four names may
be specified. All libraries must have been processed previously by
MACDEF. Error codes will be printed on the line printer. An Rt)
typed out by the CLI indicates that the program is completed.

Input File

The input file contains source data containing macro calls and
optionally macro definitions. It should be a normal ASCII file with
a legal DOS name. Read-protect attribute must be off.

Qutput File

File must be new, with a legal DOS file name.
MACDEF

MACDEF is a separate program used to generate macro libraries
for later use in SSUB runs. Input to the program is a file con-
taining definitions of commonly used macros. MACDEF produces a
file consisting of a library directory and the texts of all macro
bodies in the library. This library file is generally saved on
magnetic tape by the user for later use with the macro preprocessor

program.

To use the MACDEF program the following steps should be
performed:

1. Load the MACDEF save file.

2. Create a new file containing the definitions for all
macros to be included in the library. The name given

to this file is used to form the macro library name.
3. Ready the line printer.
4., Enter the following command at the teletype:

MACDEF library-name a

31

The names of all defined macros and any error message
codes will be printed on the line printer. An R‘Z
typed out by the CLI indicates that the program is
finished.

5. To save the library on tape, dump the file created by
MACDEF. This file is named "library-name.ML".

6. If any errors are detected by MACDEF, the original file
should be corrected, the .ML file deleted, and the

program rerun.

Input File

The input file consists of up to 100 macro definitions. Extra
cards should not be placed between macro definitions. The file
should be a normal ASCII file with a legal DOS name. Read protect
attribute should be off.

Output File

The output file is created on disk by MACDEF. The name of this
file is the same as the input file with a .ML extension appended.

Output Message

Error messages from SSUB and MACDEF are output to the printer.

Error messages have the following format:

"LINE line-number ERROR NO. number"
where "line-number" identifies a line in the input file and ''number"
identifies the type of error., In Table III errors related to macro
definitions are listed under MACDEF although they may also occur in

any SSUB run.

Error messages appearing on the teletype are DOS system messages

and are described in the DOS User's Manual.

32

Table III

Output Messages
For Macro Processor

SSUB Errors

Number

Problems

Program Action

6

10

11

12

13

14

15

Input file not specified or not a

legal DOS file.
Disk read error.
Output file already exists,

a. Disk write error.

b. Disk space exhausted.

End of source data while pro-
cessing quote string., Source
data may be the input file, a
macro parameter value, or a

macro body.

Quote string greater than 1000

characters.

Illegal use of $ in source data,

Illegal number of arguments in

macro call.

Illegal delimiter character
following $Q.

Preprocessor storage area

exceeded.

Exit from program.

Processing continues,
Exit from program.

Processing continues.

String is terminated.
If source is input
file, exit from
program., Otherwise

processing continues.

String terminated.

Processing continues.
Processing continues.

Macro call is ignored.

Processing continues,

Processing continues.,

$Q ignored.

No more argument
values are accepted.
Processing continues
but other errors will

likely occur.

33

Table III (Continued)

Output Messages
For Macro Processor

SSUB Errors

Program Action

Number Problems
16 Error in macro call argument
a. No left parenthesis
when arguments expected.
b. End of input source
before all argument
values obtained.
17 Too many macros. Limit is 160.
19 Library file could not be opened.

MACDEF Errors

Number Problems
7 Disk read error.

9 a. Disk write error.
b. Disk space exhausted.

30 Number of arguments on MDEF line
not a digit.

31 Illegal or missing macro on MDEF
line.

32 "MDEF" not found where expected.

33 Unexpected end of input file

a. While reading macro body.
b. Extra characters follow

final MEND line.

Macro call is ignored.

Processing continues.

Program is terminated.

Program terminates.

Program Action

Processing continues.

Processing continues,

Macro is not defined.

Scan to next MDEF line.

Macro is not defined.

Scan to next MDEF line.

Continues scan for

IIM])EFII

Macro is terminated as
if MEND found.

Termination of program.

34

Table III (Concluded)

Output Messages
For Macro Processor

MACDEF Errors

Number Problems Program Action
34 Input file cannot be opened. Termination of program.

35 Attempt to put more than 100 Program terminates
macros in a library. as if end of file read.

MACDEF Informational Message

"MACRO name DEFINED"

35

SECTION IV

SCENARIO ASSEMBLER

INTRODUCTION

The Scenario Assembler program (CVT) converts external (symbolic)
scenarios into internal (absolute) scenarios which are tailored to a
specific terminal type and data communications control procedure.

This reduces the real-time work of the Scenario Interpreter in the
area of scenario processing. To further ease the burden of the
Scenario Interpreter, the Scenario Assembler performs character
conversions where appropriate and adds start-of-message/end-of-message
(SOM/EOM) sequences to queries to be sent to a system under test (SUT).
CVT runs under Data General's Disk Operating System (DOS) and its
operation must follow the conventions established by DOS. A complete
description of the design and implementation of the Scenario Assembler

can be found in Volume 4 of this series.

SYSTEM FLOW

The system flow of the assembly process is shown in Figure 3.
The external scenarios may be input to the system from a card deck,
from magnetic tape, or from the control teletype. The Scenario
Assembler program (CVI.SV) and its associated tables, DEVTAB and
SUTTAB, must be input from magnetic tape. The external scenarios,
the Assembler, and the tables must reside on disk before execution
is initiated. The symbol table is a temporary file written to disk
during execution of the Assembler and then deleted at the end of the
assembly. The listing on the line printer is also a temporary file
and can be relisted only by re-executing the Assembler. The internal
scenario is written to disk and can remain there or be written on

magnetic tape for further use.

36

ES

FROM
MAG ES FROM
TAPE TELETYPE

ES

FROM
CARD DECK
DISK
|| SE— -
EXECUTE
CcvT

SYMBOL

ERROR
MESSAGES

TABLE
(TEMPORARY)
PRINTOUT
(IF SELECTED) IS
FILE
WRITTEN
TO DISK
~

[+
~
<
|
=

Figure 3 SYSTEM FLOW OF THE SCENARIO ASSEMBLER

37

OPERATING PROCEDURES

The Scenario Assembler operates with disk files only, and there-
fore all input files and the program save file itself must reside on

disk before execution can begin.

Preparing Files

External Scenario

An external scenario (ES) is a stream of characters containing
the scenario instructions to be assembled. The format of the ES is
shown in Figure 4. The Assembler processes the ES one instruction
at a time, interpreting a carriage return as the end of the instruction.
This means that a scenario instruction is not restricted in its length,
but must use a carriage return only as an instruction termination

character.

The first field of an instruction is the op-code field, which is
a single character defining the instruction type. The op-code must
always appear as the first character of an instruction with no pre-
ceding blanks. If the first character of an instruction is a blank,
the instruction is treated as a commend by the Assembler. Following
the op-code are 0 to 3 fields, depending upon the requirements of
the particular instruction type. These fields are separated by
one or more blanks except that a blank between the first field (op-
code) and the second field is optional. A detailed list of instruction
types and their descriptions may be found in Volume 2 of this series.

Scenarios which are to be assembled may be loaded to disk in
several ways, using the Command Line Interpreter (CLI) of the Disk
Operating System.

38

Length

in Bytes Description*

4-6 Allocate instruction to cause a set of Registers
to be allocated in core.

1 Instruction type or op code field.

0-3 From 0 to 3 fields (depending on instruction
type) which generates fixed length fields in
the internal scenario.

0-k Either @ or 1 variable length character string
field (depending on instruction type). May
include control characters.

1 Carriage return character which signals end of

a scenario instruction.

Above 4 fields are repeated for each instruction

in the scenario.

End of scenario signalled by end of DOS file.

*All character data

Figure 4. External Scenario Format

39

1. Load from tape to disk
LOAD MTO:x scen

2. Transfer from card reader to disk

XFER/A SCDR scen or LXFER $CDR scen
3. Created through the DOS Editor

4., Created as an output file of the Macro Preprocessor

SSUB x scen (1lib)

The various DOS commands and programs are fully described in the
Data General Software Manuals (References 1 and 2). The Macro Pre-

processor is described in Volume 3 of this series.

Program Files

The Assembler program and its associated conversion tables
reside on tape as files, and they also must be read to disk. This
can be accomplished with the DOS command

LOAD MT@:x CVT.SV DEVTAB SUTTAE!

This loads the Assembler program save file (CVT.SV) as well as the
conversion table (DEVTAB) and start/end-of-message table (SUTTAB),
from file x of a magnetic tape mounted on the system tape drive

selected as transport @.

Executing Assembler

The Assembler can be operated in either conversational or non-
conversational mode from the control teletype (TTY). In non-conversa-
tional mode, all input parameters are included in the initial call.

In conversational mode, the Assembler requests the input parameters

one at a time. To execute in non-conversational mode, type:

CVT [;g] scen codel code2

40

where:
CVT is the name of the Assembler program

P is the optional partial print switch which

provides a printout of the ES only
N is the optional no-print switch

scen is the name of the external scenario to

be assembled

codel indicates the conversion method and conversion
subtable from DEVTAB to be used for string

conversions (see Table IV)

code2 indicates the SOM/EOM sequence subtable from
SUTTAB to be used (see Table V)

In both conversational and non-conversational modes, the

Assembler types the message:
TO CANCEL RUN, TYPE CONTROL-A

which indicates that the assembly process has begun. The Assembler
can be interrupted at any time during assembly by depressing the

Control and A characters simultaneously.
For conversational mode enter:
CcvT | /P
/N
and the Assembler responds with:

ENTER EXTERNAL SCENARIO NAME

When a valid external scenario name is entered, followed by a carriage

return, the program types:

ENTER CODE FOR CONVERSION

41

Table IV

Available Codes for Conversion

Code

Comment

A one-to-one conversion to 8-bit zero-parity ASCII
where the leftmost bit is the parity bit and is

always set to zero.

A one-to-one conversion to 8-bit even-parity ASCII
where the leftmost bit is the parity bit and is set
to one only if it is necessary to make the total

number of bits in the byte even.

A one-to-several conversion to 7-bit 2741 EBCDIC
where the parity bit (odd parity) is the rightmost
bit, and a zero bit 1s added at the left to fill
the byte. (See Appendix I)

A one-to-one conversion to 8-bit one-parity ASCII
where the parity bit is the leftmost bit and is

always set to 1.

A one-to-several conversion to 7-bit 2741 EBCDIC
where the seven bits are in the reverse order of
those in use for code3 and a zero bit is added at

the left to £ill the byte.

A one-to-several conversion to 7-bit 2741
Correspondence Code reversed for use on the field
test system., The parity bit is right most bit and
a zero bit i1s added at the left to fill the byte.

42

Table IV (Concluded)

Available Codes for Conversion

Code

Comment

A one-to-several conversion to 7-bit 2741 Correspondence
Code for use in the fixed-site system, The parity bit

is the rightmost and a zero bit is added at the left to
fill the byte.

A one-to-one conversion to 8-bit odd parity ASCII where

the leftmost bit is the parity bit.

43

Table V

Available Codes for SOM/EOM

Code EOM SOM

1 158 = CR none

2 2238 none

3 1768 = ~ none

4 1334 37 = CR @ 26 = @

5 2158 = CR none

6 158 128 = CR LF none

7 none none

8 1555 1744 = CR @ 64g .@

9 none 268 268 268 28
268 = SYN SYN
SYN STX SYN

10 04 = EOT none

44

An integer, from Table IV, should be entered, followed by a carriage

return. The Assembler then asks:
ENTER CODE FOR END-QOF-MESSAGE SEQUENCE

and a value from Table V should be entered. This completes the

conversational mode of input.

If an assembly error occurs, the number of the line which caused
it and the error message are printed on the teletype. This happens
regardless of the print option selected. At the end of the run, or
if Control-A is used, control is returned to the NOVA disk operating
system (DOS) and an "R" is typed.

OUTPUT

Output of the Assembler is an internal scenario written to
disk with the same name as the external scenario but with the exten-
sion .IS appended. If an internal scenario already exists for a
particular scenario, the old one is automatically deleted and a new
one is created for the new Assembly run. Other output of the Assembler
includes optional printed listings on the line printer and messages

printed to the teletype.

Internal Scenario

The internal scenario consists of 3 initial bytes of information,
followed by processed scenario instructions, and ended by a 2-byte
null word. The first information byte is an 8-bit error indicator,
each bit being set only if a specific error occurred during assembly.
The Scenario Interpreter will accept an internal scenario only if

its first byte is zero, i.e., no errors have occurred.

The second byte of the internal scenario identifies the equipment
type for which the scenario was assembled. It contains the conversion

parameters used to assemble the scenario and make it specific to a

45

given SUT and terminal. The first four bits are the conversion

code (first input parameter) and the second four bits are the SOM/EOM
code (second input parameter). If the internal scenario is completely
independent of any conversion parameters (i.e., no queries are sent

to or received from the SUT), the scenario is called universal, the
equipment type is set to zero, and the Scenario Interpreter will
accept it to run on any device because it has not been tailored for

a particular SUT or terminal.

The third byte indicates the number of registers to be allocated

for each use of this scenario. This number may vary from 3 to 127.
The Assembler determines this number, not from input parameters as
with byte two, but from an Assembler Directive instruction included
within the scenario itself, preferably the first instruction. This
instruction (op-code = a) should appear only once per scenario; if
the instruction is missing, byte three contains the default value

of 8.

The scenario instructions themselves follow these three initial
bytes. Each instruction begins with a 2-byte length field, giving
the length in bytes of the instruction, including the length field.
The l-byte op-code field is next. Depending upon the particular
instruction requirements, there may follow 0 to 3 fixed length fields,
0 or 1 variable-length-string field, or no additional fields. The
instructions immediately follow one another, with no intervening
delimiters. The end of the internal scenario is signalled by a 2-
byte null word.

Optional Listings

When running the Scenario Assembler, three print options are

available for printing on a line printer.

46

1. full printing
2, partial printing
3. no printing

A sample output listing is given in Appendix II. Full printing is
selected when invoking the Assembler by typing CVT without either

the P or N options in either the conversational or non-conversational
mode. This produces first a listing of the external scenario. Each
line contains the external line number, the starting byte address of
the corresponding instruction in the internal scenario, and then up to
58 more characters of the instruction., If the instruction is longer
than 59 characters, it is truncated. Interspersed in this listing are

error messages listed beneath the instructions which caused them.

The listing of the internal scenario appears after the external
scenario. This begins with the printing of the error indicator,
equipment type, and the Register allocation bytes. Each instruction
of the ES is printed, followed by the corresponding internal scenario
instruction if one exists (assembler directives are never written in
the internal scenario). The internal scenario instruction is printed,
2 bytes on a line, preceded by the byte address, in decimal, of the
first of the two bytes. Following the two bytes is the ASCII trans-
lation of the bytes with control characters printed as blanks. Two
bytes are always printed. Therefore, if the instruction has an odd
number of bytes, the first byte of the next instruction is printed
and is also repeated as the first byte of the next IS instruction.

The symbol table is printed after the internal scenario. Each
entry of the symbol table is represented by a line of print which
gives the length of the label, the label, the internal scenario byte
address associated with the label, and the line number of the external
scenario instruction which first referenced the label. Also printed
is the number of entries in the table. An example of the full print-

out is given in Appendix II.
47

The partial print option is selected by typing CVT/P in either
the conversational or non-conversational mode. This option produces
the listing of the external scenario as described above plus a
printout of the name, indicator byte, equipment byte, and Register
allocation byte of the internal scenario. The rest of the listing
of the internal scenario and the listing of the symbol table are

omitted.

The no-print option produces no listing to the line printer.
As in the case of the other two options, if any errors occur, the

error messages are printed on the teletype.

Output Messages

Messages are printed to the teletype for two reasons:

l. to request an input in conversational mode; and

2. to report an error.

Both types are self-explanatory. To correct errors in input para-
meters, input corrections must be typed in. For other messages,

no immediate action is needed, except when it may be desirable to
interrupt the assembly with a Control-A command. If assembly errors
occur, they need to be corrected in the external scenario, and the
external scenario needs to be reassembled. Otherwise, the error
indicator byte will not be zero, and the internal scenario will not
be accepted by the Scenario Interpreter. Table VI includes all
possible output messages. The error message designates the number
of the line which caused it, except for the LABEL UNDEFINED message

which indicates the line number of the first reference to the label.

48

Table VI

Output Messages
For Scenario Assembler

Messages Requiring Responses

TO CANCEL RUN, USE CONTROL-A.

ENTER EXTERNAL SCENARIO NAME.

SCENARIO NAME NOT FOUND, RE-ENTER OR CANCEL RUN.
ENTER CODE FOR CONVERSION.

CONVERSION CODE NOT IN TABLE. ENTER NEW CODE OR CANCEL
RUN.

ENTER CODE FOR END-OF-MESSAGE SEQUENCE.

END-OF-MESSAGE CODE NOT IN TABLE. ENTER NEW CODE OR
CANCEL RUN.

TABLE NOT FOUND. CANCEL RUN.

Messages Requiring No Responses

TOO MANY FIELDS.

LABEL --- IS UNDEFINED.

ALLOCATE IS TOO SMALL.

UNDEFINED OP CODE = ---.

LITERAL MISSING.

OUT-OF-RANGE NUMBER.

WARNING, SHOULD DOUBLE QUOTE BE TWO SINGLE QUOTES.
LABEL MULTIPLY DEFINED.

FIELD MISSING.

ILLEGAL FIELD.

49

SECTION V

EQUIPMENT TABLE

INTRODUCTION

The Equipment Table (ET) is not considered part of the Scenario
Interpreter, but is a separate entity to be created by the user to
reflect the characteristics of the equipment to be emulated. The
Equipment Table consists of a set of ET entries which describe the
SUT remote-terminal equipment to be emulated (as well as the control
TTY), and relate it to the emulator I/0 ports. Each entry (258 words
long) describes one equipment component of the SUT. The format of an

ET entry is given in Table V of Volume 2 of this series.

GENERATION

The Equipment Table must be generated by the user to depict the
particular equipment configuration to be emulated. A source file
(EQUIP) of the ET is normally created and then assembled with the
NOVA assembler. The assembled file (EQUIP.RB) must be included when

generating an emulator system, as described in Section VI.

(The EQUIP file contains several items in addition to the ET.
The ET history record (ETREC), which is the second record written on
the log tape during a run, is a proper subset of EQUIP. The ET
itself is a proper subset of ETREC. The requirements and conventions

of EQUIP, ETREC, and ET will be clarified in the next subsection.)

The ET source file, EQUIP, is normally written in NOVA assembly
language, with each entry correctly formatted. This can be accomplished
by creating the file line by line as needed, or by using macros and

the macro processor to ease the burden of repetition. Most often

macros will be used. The macros used to create an Equipment Table

50

for the present field-test system (including digital I/0 facilities)
are described in Figure 5.

An ET entry is generated by a sequence of four ordered macro
calls: either ETENTRY1l, ETENTRY5, ETENTRY3, ETENTRY6 or ETENTRYI,
ETENTRY2, ETENTRY3, ETENTRY6. The only difference between the two
sequences is that the former (ETENTRY5) allows ETEOM to be specified
as a parameter whereas the latter (ETENTRY2) generates an ETEOM value
of EOMl. For ease of reading the assembly listing, the ETENTRYl card

should start in column 1 and the others in column 10.%*

An input file, EQ, for an Equipment Table with macros not yet
expanded is shown in Figure 6. The six macro definitions used to
create the EQUIP file from the EQ file appear at the beginning of the
EQ file. A seventh macro definition occurs later in lines 89-91 but is
is not essential to the proper formatting of the file. Figure 7 shows
a portion of the EQUIP file after execution of the macro processor.

In this form, the file is acceptable to the NOVA assembler. Figure 8
shows a portion of the ET after it has been assembled. Appendix III
contains a complete listing of EQUIP.RB, the assembled Equipment Table
file.

REQUIREMENTS AND CONVENTIONS

The following mandatory requirements must be met by EQUIP, ETREC,

and the ET. Line numbers referenced below are those of Figure 6.

1. The following (defined below) must be declared as entry
points (external/global variables) as shown at lines 44
to 48: E@@P@Q, EP, E1l, ETREC, ETEND, ETENT, E2, ETLEN.

*For the lab system (one with no digital I/0), ETENTRY6 can be elimi-
nated and ETENTRY3 modified to generate zero values for words 228 =
248.

51

MACRO

NAME PURPOSE PARAMETERS
ETENTRY1 Generates words 0-5 $1 = NOVA assembler label for ET
of ET entry. Entry
$2 = ETRO. Should be initialized
to zero.
$3 = first ASCII character of
ETYPE.
$4 = second ASCII character of
ETYPE.
$5 = ETID in decimal.
$6 = CHILD. The NOVA assembler
label for some other ET
entry or zero.
$7 = LINK. The NOVA assembler
label for some other ET
entry or zero.
$8 = PARNT. The NOVA assembler
label for some other ET
entry or zero.
ETENTRY2 | Generates words $1 = ETRAT in octal.*
6-17, of ET
anEry with $2 = TERMT in octal.
help of ETENTRY4 $3 = STATI. Enter I or U.
$4 = PORTO in octal.
$5 = PORTI in octal.
$6 = SPRTO in octal.
$7 = SPRTI in octal.

*To enter a decimal value, follow it

with a decimal point.

Figure 5.

Equipment Table Macros

52

MACRO
NAME

PURPOSE

PARAMETERS

ETENTRY 3

Generates words
2¢8 - 218 of ET

entry

$1
§2

$3
$4

SUTAD in octal,

ETIND in octal., Bits 1, 2,
and 3 should be initialized

to zero, the others as desired.
Bit @ must be set to 1 for the
control TTY.

BYTEL in octal.
PARTY in octal.

ETENTRY6

Generates words

228 - 248 of ET

entry

$1

$2

$3

$4

$5

$6

$7

CCC+1l in ETDID., Number of
digital inputs in decimal.

BSSSS in ETDID. First input
in octal.

DDDDDD in ETDID. Device number
in octal.

CCC+1 in ETDOD. Number of
digital outputs in decimal.

BSSSS in ETDOD. First output
in octal.

DDDDDD in ETDOD., Device number
in octal.

ETDOA.

Figure 5. Equipment Table

53

Macros (Continued)

MACRO
NAME PURPOSE PARAMETERS
ETENTRY5 Generates words $1 = ETRAT in octal¥,
6~175 of ET entry $2 = TERMT in octal.
with help of $3 = STATI. Enter I or U.
ETENTRY4 $4 = PORTO in octal.
$5 = PORTI in octal,
$6 = SPRTO in octal,
$7 = SPRTI in octal.
$8 = ETEOM.
ETENTRY 4 Generates words $1 = unused. Enter zero.
148 - 178 when $2 = TERMT in octal.
called by $3 = STATI. Enter I or U,
ETENTRY2 or $4 = PORTO in octal.
ETENTRY5 $5 = PORTI in octal.
$6 = SPRTO in octal.
$7 = SPRTI in octal.

* To enter a decimal value, follow it

with a decimal point

Figure 5. Equipment Table Macros (Concluded)

54

The following labels must be used for particular ET entries

(although the user may also assign labels of his own choice to the

same entries):

2‘

The label E@@P@ must be used for the first ET entry which
must be the control TTY (see line 83).

The label E@ must be used for the ET entry for the control
TTY. Therefore, Ef is equivalent to EP@@PP. See line 84;
the first parameter of the macro ETENTRY1l is the label E{.

The label El must be used for the ET entry for the single

asynchronous device in the lab system (see line 89).

The label E2 must be used for the ET entry for the first
asynchronous device in the field-test system and for the
first DCM device in the lab system. The Exec assumes that
the ET entries for the asynchronous devices in the 64-~1line
field-test system are ordered as shown in Figure 9 and that
those for the DCM in the lab system are ordered as shown
in Figure 10. (Figure 11 shows the ordering and device
numbers used for the 16-line field-test system which are
those of Figure 6, lines 96-159.)

ETREC must be defined so that:

6.

It includes the entire ET, preceded by four words as shown

in Table XII of Volume 2 of this series (see lines 79-191).

EQUIP must include the following definitions:

ETEND must contain the length of an ET entry (see line 78).
ETLEN is equivalent to ETEND (see line 195).
ETENT must contain the number of ET entries (see line 194).

One or more EOM lists must be established as in lines 196-
225. An EOM list is of variable length, terminated by -1

55

fQ

1 STITL EQYIP

? MIEF ETENTRY{L(8)

3 1t

4 5e JETRY

b) "y9eu80,+"84 JETYPE

] LN JETID

7 b1} JCHILD

3 v JLINK

P) » JPARNT

{4 MEND

11 MOEF cTaENTwY2(7)

12 81 JETRAT

13 ¢ JETUBP

14 £33 JETEDM

15 0 JETRSP

16 L) 1ETPAD

17 [JRRING,PRING
18 ETENTRY4(¢,92,%3,%4,85,468,987)

19 MeNU

22 AUEF eTeNTRYAL7)

21 bweSo,+Y7 JETILGA, ETLGN
22 p2%238 ,+83 JTERMT, STATI
23 34¢256,+%5 JPORTY, PORTI
24 $5#236,+37 JSPRTO, 3PRT]
25 MEND

26 MUEF eTENIRYS(8)

27 31 JETRAT

28 ¢ JETQBP

29 23 JETEUM

32 ¢ JETRSP

3 ¢ JETPAD

32 3 JRRING,PRING
33 ETENTRYA(Q,32,83,%4,35,36,%7)

34 MEND

33 MDEF ETENTRYI(4)

36 $19256,+%284 JSUTAD, ETIND
37 33¢2356,+34 JBYTEL, PANTY
38 MENU

39 MQOEF ETENTRYE(7)

49 Sl.=ilelp2+82hs74+%) JETDID

41 34,=191R2¢3587+%8 JETDUD

42 7 JETDOA

43 MEND

44 «EnT E2000,EQ,EL,ETREC

43 +ENT ETEND

468 +ENT ETENT

47 JENT EQ

48 +ENT ETLEN

49 +OUSR As{Q]}

e «DUSR Jumifl

51 «DySw 53123

32 DUSx Tsi24

33 «DUSR Us§2d

54 OLUSH w127

33 «DUSR En108

56 +DUSR 28132

37 +ODUSR Nuiib

58 DuUSR QOsmyi7

59 L0USR RTy{®13),

89 «DUSR BL1s7,

84 «DUSR B 288,

682 +DUSR PTi80

Figure 6. File EQ of Equipment Table (Macros not Expanded)

56

53 o0 &n PT28N

54 el ®m CDUDLINES3e]16,44
65 eTuS~ [342848323¢16,+4
50 oliuSx IRM226U83v15,+4
87 Lul~ 1BMLIOS3BY

58 JUSN 200086

69 JOUSk JBM2741w)

7¢ JCLE~ 1274183015,%4
71 otUSN ZASClsiw15,¢]
72 ol Sr 2A3CEBLe15,+6
73 JNUSn EASC282w 16,42
74 bt Sr EBSCES2415,45
78 «TETH &

76 o IREL

77 NHEL

78 ETenCs yiNoee3308Y

79 ETREC: e v EeVE JUSED TO wRITE ET ON TAPE
1] cyyCveb?A00+4

61 “P\

8¢ «*l

8y Eorany
84 FTEVImMYL(Ea,",C,T,8,2,31,¢)

85 ETENTRYS (11P,,248C0,1,11,1v,8,0,E0M2)
8¢ LYLNIFVS(ﬁ;1,3.'£’

87 eTcMIRYS(L,0,2,1,0,0,0)

36 Euf NG

89 ETENT"'YI(:l,"~.ﬂ'5.14,d,:2,d]

92 eTer PIRYS(A110,,EASC2,1,51,97,1,1,E0M3)
91 ETer i#Y3(15441,9.,E)

92 =Tenimrs(l,e,4,1,49,¥,2)

93 MoEP TTYJ

P4 12741

95 mENy

96 EVENTWYL(E2,0,%,Y,1,2,83,2)

9?7 eTErTRYS(RTL,TTY33,7,43,42,1,1,E0M4)
98 ETer TRYI(I04,3,30L1,PT1)

99 eTenThRY6(2,02,,71,4,20,,66,D060A)
10¢ ETenTnYi(ed,6,T,v,2,2,E4,3)

131 ETENTRYS(RYTL,TTY33,1,43,42,2,2,E0M5)
122 ETEMIRPYI(3L,,0,8LL,PTL)

193 cTewTkRYS(2,22,,71,4,24,,66,006804)
104 ETENTRY (R4, ,T,Y,3,0,E44,0)

125 ETENTRY2(RTL,TTY33,1,43,42,3,3)
106 eleMTRYI(32,,3,8LL1,PTY)

147 ETEMTRYE(2,24,,71,4,08,,06,D0664)
128 ETENTY](caa,¢,1,Y,4,0,E13,0)

129 ETEMTRY2(RTL,TTY33,1,43,42,4,4)
1190 ETENTRYI(29,,0,BLL,PTY)

11 eETenThkY6(2,06,,71,4,12,,66,00664)
112 BETENTwY)} (21d,¢,T,Y,5,0,E14,4)

113 ETENTRY2(RTL,T1Y33,1,43,42,5,95)
114 ETeMIRYI(33.,0,B1L8,PT1)

113 tETenNTRY6(2,08,,71,4,16,,66,D0668)
115 ETtNTHYl(Elﬂ;u;T,Y,b,E,ilS,B)

117 ETEMNTRY2(RTY,TTY33,1,43,42,6,6)
116 ETeNTRY3(34,,0,8LL1,PTY)

119 tTEMIFYS(2,108,.,71,4,2C,,66,D066R)
120 ETENTRYL(E\®%,»,T,Y,7,8,E16,08)

121 tTtﬁTHVZ(RTl'TTY33111‘3"2;7;7]
122 ETEMTRYZ(35.,9,8LL1,PTY)

123 cTetTFYS(2,12,,71,4,24,,66,D0668)
124 ETENTRY1(ELE,c,T,Y,8,0,E17,Q)

125 . :T:NTPV2(RT1,fTY33;I,43,42,8..8.)

Figure 6. File EQ of Equipment Table (Macros not Expanded)

(continued)

57

126 ETernTRY3(36,,2,301,PTY)

127 eTetnTryA(2,14,,71,4,28,,06,D006013)
128 ETENTﬂvltt,7,',T;Y'Q'U'EIU,U)

129 eTeMIRY2(RYL,TTYS3,1,45,44,1,1)
130 BETErTFY3(37.,2,801,PT1)

131 t’f”‘h‘ktzy16.'71'4'@9.15710067‘)
132 ETENTf'Vl(&1buU'TuYulz'2'E19'U)

133 tTCﬁTﬁV?(RTI'TTYSS'1'4514"?'2)
134 cTe? TRY3I(3b,,0,BL1,PTY)

138 ETENTRYE(2,18,,7),4,04,,67,00674)
136 ETELTHY (kY ,0,7,Y,11,2,E20,0)

137 tTLrTRY2(RTY,TTY33,1,45,44,3,3)
1386 ETerTRY3I(36.92,8L1,PTY)

139 t7LLTFYf(2,2”.,71,4,%8.;0710067‘)
140 EIENTnVl(&?J,w,1,V.l?.@.E?l,Q)

141 tTet 1FY2(RT1,T1Y33,1,45,44,4,4)
142 eTENIKNYN (402, ,0,BLL,P1Y)

143 ETEPTFYS(2,22,,71,4,12,.,07,00674)
144 ETENTrY (E2Y,,,7,Y,13,0,EC2,0)

145 ETLh’5\2(RT1'71YJS'I"3'44,5'5)
146 cTerThRY3(41,,2,3L1,PTY)

147 eTet Thy6(2,264971,4,16.,67,0U678)
146 FIENTRY1(cCe¢,¢,7,Y,14,2,E23,0)

149 eTenTRY2(RTY,TTY33,1,40,44,6,6)
15¢ eTehTRYI(42,,2,BLL,PTY)

151 cTENTRYE(2,20.,71,4,20,,67,00678)
182 ETENTRYLI By, v T,Y,15,0,E24,0)

153 ETerTRY2(RTY,TTY33,1,45,44,7,7)
154 ETenTRY3(43,,0,BLL,PTY)

155 tTh"-TRVC(2,25.,71,4,24.,67,’354!)76)
156 EYENTPYLI(EZQ,0,T,Y,1€6,2,E5,0)

157 ETEATRY2(RTL,TTY33,1,45,44,8,,4,)
108 cTEMTRYI(44,,0,801,PTY)

159 cTer(RYE(2,30,,71,4,28,,067,00678)
162 ETENTRYL(e®,:,L,N,5,E6,0,C)

101 tTtNTRY2(24U0.,DDDLINE'1,32.31.0.0)
162 eTENTRY3(43,,08,8.2,PT2)

163 eTer TRYE(),0,2,1,0,0,P)

10‘ ETENT“Yl(EH'V'CIN'G'EEJE7'E5)

165 ETEsTRY2(24C0,,18M2848,1,32,31,7,0R)
166 cTenTFY3(116,2,8L2,PT2)

167 CTLRTFY&(!,E;E;!;G'G'Q)

168 ETENTRYL(E?,¢,C,N,7,E118,0,E8)

169 ET:NTGY?(24€E.,IEN2848.U,32.31.U,U)
170 ETer1FY3(25%50,0,BL2,PT2)

171 ETenTRYS(1,0,0,1,0,0,¢)

172 ETENTHYl(EB,@,D;S,B'U'EQ,EGJ

173 tTenTRY2 (2400, ,IB8M2200,1,32,31,0,0)
174 ETenTRYJ(24€,0,8L2,PT2)

178 ETerYRYS(1,0,0,1,0,0,0)

176 ETENT“Yl(ES,V,L,S'Q'Z'EIG'EQJ

177 ETEMTRY2 (24002, ,18M2268,1,32,31,0,0)
178 cTenwTRY3(241,0,BL2,PT2)

179 tTenTRYS6(1,06,0,1,0,0,0)

180 ETENTRY1(EQVK,2,”,T7,10,0,3,E0)

1814 eTENTRY2(150@,,1BM1053,u,32,2,0,0)
182 cTENIRYY(242,0,BL2,PT2)

183 e TeENTRYS(),0,2,1,0,0,0)

184 ETENTRYI(E31,2,C0,8,11,2,E12,€7)

185 ETENTRY2(24023,,1BM2260,U,32,31,0,0)
186 ETEMTRYJ(244,08,8L2,PT72)

187 ETENTRYS(),8,0,1,0,0,0)

188 ETENTNY{(EIIIﬂ'D'S'12;0,!,57)

Figure 6. File EQof Equipment Table (Macros not Expanded)
(continued)

58

189 cflet 1=12(24cd,, JoMe2oe,u,32,31,0,0)

ip¢ eTre TRhY3(245,0,B02,PT2)
191 ZTf"'r"'G(l,'o'Q'1;0;212)
162 toUIyt

1¥d LEh skt vDeEule?

194 FTFLT: chvLyme 2000 /LEN
198 kmfiene e Bl

ivo tOMyt 37
197 -1
1vé -l
199 -]
209 -1
20t -1
232 btutet 1%
203 5

244 3
2¢b -1
P} -1
2n? -
PYL B AVANICR | -1
249y -1
21e -1
211 =1
212 -1
213 -
214 tu~dt 87
215 Y
21¢ -1
217 =1
218 -1
219 -1
220 EQMde 3?7
221 43
222 -1
223 -1
224 -1

228 -y
226 U06bA: s
227 UG668: ©
228 DUG74A: .
229 U067R; N
239 BN

Figure 6. File EQ of Equipment Table (Macros not Expanded)
(concluded)

59

EQulP

1 WYITL EQULIP

2 JENT EnDUR, v, el ,KTREC

3 JFNT ETFND

4 obieT ETLNT

3 JENT B2

[T EILEN

7 JNiISK Am10}

8 USSR Isiit

9 LIS 53129

1¢ LOUSK 1£124

11 FUIVKT 2NVE B3]

12 JUUSR nE127

138 JLUUNN EBIQS

14 JNUSKH L1322

15 JLudn NEBi16

10 JuuSn Ox117

17 JISKH HTIEiAY,

18 LNUSH BILLE7,

1§ JUUSK nl ZmB,

20 Jid3n rTLE0

21 +JUOUER HTZaN

22 eDuon UrDLINESIwih, ¢4

23 «NUSK JHM2B4dEBIe]O,+4d

24 JUUSKN LbM22RUEse 6,44

25 USSR [RM1@53Ed

26 LDOuSm p2p0Yss

27 JDUSR [BM27418/

28 «CUSK 12741830 1R, ,+4

29 «NUSK LASCYIBlwlo,+]

30 Ul LASCEE]®16,46

31 «DUNK £ASCemZeif,+2

32 JJUSK EASCHEZw1b6,+5

33 JTXTM &

hY «ZREL

h1] HREL

36 ETEND: EAcNLU=ENQ00

37 ETReC: 2R02 e "E JUSED T0 4RITE ET ON TaPb
3y EQv9S=£3u00+4

Jy "H

4ap o*]

41 Ewvvoios

42 E21t

43 [JETR®

44 "Ce236,+"T 1ETYPE

45 G, JETIL

a6 d JCHILD

47 [31 JLINK

a8 a JPARNT

4y 114, JETRAT
LT} " JETQHP

51 EnNme JETEQOM

52 v JETRSP

53 ¢ JETPAD

e v JRRING,PRING
35 Yeedp,+37 JETLGA, ETLGN
58 LASCE92S56,+1 JTERMT, STATI
87 11v236,+10 JPURTO, PORTI
58 Ce256,+C JSPRTYO, SPRTI
39 veel6,+188 1SUTAD, ETIND
1" b.v206,+1 JBYTEL, PARTY
84 le=1%132+0B7+0 JETDID
62 leol®in2e0B7+0 JETLOV

Figure 7. Portion of File EQUIP of Equipment Table
(Macros Expanded)

60

64 EVENDS
85 €13

87 E2t

1086
109 Ed3
{10
111
112
113
114
118
116
117
118
119
120
121
122
123
124
128

Figure 7.

K

¢
"0'256.’"3
14,

¢
E2

&

vllbv,

rd

E0MA

v

v

¥

Le2Sn,e87
EadtreebSo,+1
H1e256,+50
1e25n .+
15,9253, +0b¢
55,0206 ,+F
{em=1e132«087 ¢
1.-¢'1U?‘“°7’V)

v

"Tegnh, +"Y

¢

£3

BT

v

Eo»ﬁ‘

['4

4

v

o5 ,+37
12741%256,+1
432256 ,+42
14250,

02 ,*255,+0p8
dlL19256,.+PT1

2e=10182+80.87+71
4,=1¢1H2+0¥,87+80

P08k A

[
"Te2a6,+"Y
2.

%

X

RTH

55,37
[27419258,¢1
4Ne25K ,+42

. 20284,42

1ETUDA

JETR2

1ETYPE
JIETIO
1CHILD
JLINK
JPARNT

JETRAT

1ETABP

JETEQM
PETRSP
PETPAD
JRRING,PRING
PETLGA, ETLGN

1 TERMT, STATI

JPORTO, PORTI
$SPRTO, SPRTI

JSUTAY,

IBYTEL, PARTY
JETNIO

TETD0D

JETNOA

JETRO

1ETYPE

TETID
JCHILD
PLINK
JPARNT

JETRAT

PETIBP

JETEOM
JETRSP
JETPAD
JRRING,PRINR
JETLGLA, ETLGN

PTERMT, STAT]

fPPOURTO, PORTI
JSPRTO, SPRTI

JSUTAL,
POYTEL, PARTY
J1ETOID

tETOO0D
PETODA

1ETRE

IETYPE

1€T1N
ICRILL
TLINK
JPARNT

JETRAT

J1ETQBP

JETEQOM
JETRSP
JETPAD
PRRING,PRING
JETLGA, ETLGN

PTERMT, 3TATI

JPORTN, PORTI

JSPRTO, SPRTI
Portion of File EQUIP of Equipment Table

(Continued)

61

ETIND

ETIND

126
127
128
129
130
134
132
133
134
1358
136
137
138
139
140
141
142
143
144
148
146
‘147
148
149
150
151
182
153
154
155
156
157
158
159
169
101
162
163
164
165
166
167
168
169
170
171
172
173
174
175
178
177
178
179
180
184
162
163
184
185
186
187
188

Figure 7. Portion of File EQUIP of Equipment Table

BEas

Eaal

E133

If{.v¢do,+dB8

}SUTAD,

SL1*259,+PTY JB8YTEL, PARTY
ce=leln’2e@2 h7+71 1eT0I0
de=1¢1d7¢P4,37+65 JETO0D

vUnka 1ETDOA

Pl 1ETKA

"Yepo0,+"Y JETYPE

S 1ETID

@ 1CHILD

taa 1LINK

3 JPANNT

wT) JETRAT
" 1ETOBP

el JETEOM

v: 1EIRSP

v JETPAD

J JRRING,PRING
250 ,.*37 JETLGA, ETLGN
127419286, ITERMT, STATI
4Jezsb, +42 JPORTO, PORTI
Je2nn, e 1SPRTQ, SPRTI

32 .v¢hn, +0bBR 15UTAU,
sLlecHn +PT1 PBYTEL, PARTY
Coe=)v1A2+94,8B7+71 1ETOIL
Goewlwlp?2+08,n7+65 1ETDUD

06F a TETDOA

e 1ETRQ

"Te206,.+"Y 1ETYPE

4, FETID

“ PCHILD

c1d FLINK

v JPARNT

ATy JETRAT
d JETIBP

EOM1 JETZOM

7 1ETRSP

7 1ETRAD

¢ JRRING,PRING

A PLEPEXY 4 JETLGA, ETWGN
[12741+256,+1 JTERMT, STATI
43e236,+42 1PORTO, PORTI
Lughg o4 J8PRTN, SPRTY
29,9280 ,+08% 1 SUTAD,
BL1e25u,+PTH 18YTEL, PARTY
2,=1°132+06,87+71 JETDID
Go=1e1832+12,37+86 1ETO00

ulo8a JETO0A

¢ JETRO

"Te2d6,+"Y JETYPE

S'e JETIO

¢ JCHILD

cid 1LINK

[JPAKNT

RT1 JETRAT
2 JETQBP

eOrty JETEOM

7 tETRSP

< 1ETPAD

9 $RRING,PRING
nezd6,+37 JETLGA, ETLGN

(Continued)

62

567
568
s569
5§70
8§71
872
873
574
578
578
577
578
579
589
581
582
583
584
5885
588
587
588
589
590
591
Jg2
503
Y94
598
5986
597
598
599
600
6l
802
603
604
LI E
8ue
607
608
609
810
841
812
6843
614
816
618
617
818
818
620
sal
622
823
624
626
s8as
627
-~ 628
820

Figure 7.

€1l

E128

E99998
LEN
ETENTS
ETLENS
EOM13

EOM2t

BL2v280,+PT2
1,=1%182+0087+0
1e=101432+087+2
[\

é
"De25h,+"8
11,

[

E12

e?

2‘6”.

@

DMy

[

"]

]

A0 ,¢37
IHM2262e256,+4
J2e2356,+31
Ne2s53,+4
2449250,+0B3
dLav286,+PT2
1.21v102+0087 ¢4
11718240870
[

d
"De258, "8
12,

[/}

(']

£7

2442,

4

€041

"]

]

0

Qegs06,+37
I1BMm2260+256,+U
320256 ,+31)

0e 56,0
245+286,+088
dL2e256,+PT2
1,21¢182+0B7+0
1,=1%132+@B7+0
Q

sEQEND=EQQUQ
EOOOV-ERV0Q/LEN
LEN

37

L3t

-]

-1

L3t

L3t

12

]

3o

L3}

-4

18YTEL, PARTY

JETOID
JETDDD
JETDOA
JETRO
JETYPE
JETID
JCHILD
JLINK
JPARNTY
JETRAT
JETQGBP
JETEOM
JETRSP
1ETPAD
JRRING,PRING
JETLGA, ETLGN
JTERMT, STATI
JPORTO, PORTI
JSPRTD, SPRTI
JSUTAD, ETIND
18YTEL, PARTY
JETODIO
JETDOD
JETLNA
JETRO
JETYPE
1ETID
JCHILD
SLINK
JPARNT
JETRAT
JETQBP
JETEOM
JETRSP
JETPAD
JRRING,PRING
JETLGA, ETuLGN
JTERMY, STATI
JPORYD, PORTI
}SPRTO, SPRTI!
JSUTAD, ETIND
1BYTEL, PARTY
JETDID
JETDDD
JETDOA

Portion of File EQUIP of Equipment Table
(Continued)

63

630 -1

631 EOMII -1
632 =1
633 =1
634 =1
638 -1
636 -1
637 EOQ~4 87
638 -1
639 =1
640 -1
641 -1
642 -1
643 EONMDI 37
644 43
645 -1
646 -1
647 -1
648 -1

649 DD66AL v
65@ DQ66B:]
-631 006741 4
652 006783 4
653 «END

Figure 7. Portion of File EQUIP of Equipment Table
(Concluded)

64

ee@dy EQUIP
STITL EQUIP
+ENT EvOQOQ,E0,E1,ETREC

«ENT ETEND
«ENT ETENT
+ENT E2
«ENT ETLEN
Ae1e} +OUSR A®1Q1
bovlll +OUSR 1m111}
200123 +.OUSR S=123
A%0124 JUJSw Tm124
200128 JOUSK U=125%
oavi2? «DUSR Wm127
0eB125 .DUSR E=109
002132 +OUSR Zm132
22¢116 +.DUSR N=116
238117 .NUSY 0Om117
2oc2e? .0USKR RT1m135,
202027 .DUSR BL1m7,
wnenLa .OUSR BLZ2ss,
cuni11? .ODUSR PTis(
08¢116 +DUSR PT2aN
VOv0ob64 «DUSR DODLINE=3wi6,+4
wlvoba «NUSR IBM2848aJw16,+4
00ve64 .DUSR IBM226083w16,+4
eaeees «DUSR IBM1053sb
vA2RL6 +CuSR D200es6
waee? .DUSR IBM274187
Y 1Y «DUSR 1274183¢16,+4
0e0R21 +CUSR ZASCimye16,+1}
200026 +JUSR ZASCEm1e16,+0
200042 DUSKk EASC2E=2¢18,+2
0P 604S «JUSR EASCEm=2e16, 45
P YLE «TXTM &
+ZREL
«NREL
Y0000'020025 ETEND? E@END=EVQRD
24001'0204105 ETREC? 20000+"E JUSED TO WRITE ET ON TAPE
P02eg2'vo1046 E9999=EQURD+4
poged'egoniln "H
00004'0Q2005! o*1
Evbunl
Edt
20005'vo0v0oR0 0 JETRO
Q00061241524 "Cw256,+"T JETYPE
Q0¥97'204000 2, JETID
d0¥ivtenaoen ? JCHILY
Q0011 'vrend2! El JLINK
Q0012'0000092 " JPARNT
R2213'v20156 110, JETRAT
¥0014'90v000 [“] JETQBP
00015'v21057"! EOM2 JETEQM
02018'2200u0e 2 JETRSP
Q0217 'e020ve) JETPAD
40241920000] JRRING,PRING
00021 '900037 Ve256,+37 JETLGA, ETLGN
¥32822'213111 ZASCE+236,+1 JTERMT, STATI
QoR23'204410 11¢256,+10 JPORTO, POKTI
20N24'2000v0 0w236,+0 JSPRTO, SPRTI
d0¥25'0v020¢ Pv256,+1168 JSUTAD, ETIND

Figure 8. Portion of File EQUIP.RB, Assembled Equipment
Table

65

0vde EWUIP

¥0v26'vR4a132
03027 'R0
80230 '0vBYR0R
0043} 'aAvdue

2ned2'gAgene
22033 '¢d2123
2PR34'00¢016
20035020002
22036 'gdes?
EPRYANLP LT
2R4A 1 ¢RY1IBS
2eo4y1'vag2ee
Pna42'aAN1265
22243 '0000027
200448 ' vvrien
JdeodStervac?
Q0BaL 1 A uBy7
2VPa7 "1ttt
de¢bv'e244ny
QAY51 '¢Rgdet
02052087
022353 '6241¢5
Pe254a'9n0eRd
PONBS5'vRLALA
200586 '@npa2n

¥0u37'dandan
00VBe 1052131
23v6]1 'edunel
¥2262'v0d0
0Q353'20vica
200641206200
¥0v65'euv0a7
0QVE6'200020
Yov67'e01073
020870'000029
Qee71'00veae
22072'0000¢Y
2me73'¢20037
QeR74'032111
V0B75'021442
20076'000421
00077'8170029
eeiea'ed3B17
ve10i'v2ee7i
ve102'e62066
voledtedi11e7

¥e104'002020
00105'052131
oeieo'voo00@2
0810790000
¥01ia'ensl1dy!
00111'9200¢0
¥0i112'2202¢7
0¥113'002000
¥2114've1101"'

Figure 8.

EVENN
E1?

Fa:

b,v256,+¢

1, =191B2+087+2
{.=1+182+087+0
b

0

"De256,+"S
14,

0

tE2

"

01,

v

EQm3

@

0

9

0v2356,+37
EASC2+256,+1
51¢256,+50
14256,+1
15.%250,+0838
8,9256,¢E
1.=1+1B2+087+0
1.=1v182+087+2
2

)

"Twb6,+"Y
1.

¢

EY

(%]

RTY

2

EOM4

2

¢

%]

PQv236,+37
12741256 ,+1
43+256,+42
1v256,¢1
39,+256,+088
BL1v256,+PT)
2.,~1¢1B2+00,B7+71
4,-1+1B82+00,B87+66
00664

]
"Te256,+"Y
2,

2

Ed

"

RT{

0

EOM3

Portion of File EQUIP.RB,

Table (Continued)

66

PARTY
IETDIO

IBYTEL,

JETLOO
JIETODOA

JETRO
JETYPE
1ETID
JCHILD
JLINK
PPARNT
JETRAT
1ETQBP
JETEUM
JETRSP
JETPAO
JRRING,PRING
JETLGA, ETLGN
JTERMT, STATI
JPURTO, PORTI
ISPRTO, SPKRTI
1SUTAO,
PARTY
JETDID

ETINO
IBYTEL

1eT000D
1ETD0A

JETRA
JETYPE
JETID
JCHILD
PLINK
JPARNT
JETRAT
JETQBP
JETEUM
JETRSP
JETPAD
JRRING,PRING
JETLGA, ETLGN
JTERMT, STATI
JPORTO, PORTI
JSPRTO, SPRTI
1SUTAD,
PARTY
JETO10

ETINO
IBYTEL,

1ET000
PETDOA

1ETRO
IETYPE
J1ETIO
JICHILL
JLINK
JPARNT
JETRAT
JETQBP
JETEQM

Assembled Equipment

9011 EWUIP
01220'200092
01021'v00R02

01224098002
D1023'042123
21024'200014
Q1028 '¢0RuRoR
Q1026'0009029
21027 000651
21032'0045402
p1031'2000022
21832'221051
R1033'0000¢Y
¢1034'¢@pQee
P1a3s5'QQurew
10236000037
P1037'¥32128
Pi¢av'e15031
Biloay'oov0Q0R
P10421122492
Q1vd3'cealls
Q1044'000PQY
V1o45'oepee
¢1046'vRavey

000028
010471204032
01vd¢'¢do02s
0105110020037
Q1082177777
o1053'177777
012841177777
01085177777
©1e86'177777
01287'¢eeey2
01060 '¢cR0RRS
2102611000232
01052'177777
010631177777
01064'177777
01v65'177777
01066'177777
010671177777
010d70'177777
01471177777
01272'177777
01073'900037
01074'177777
010758'177777
019761177777
01077'177777
p11ew'177777
01121'600037
01102'220243
01133177777
011041177777
01105177777
211861177777
21107'200220

Figure 8.

E128

Ey9991
LEN
ETENT!
ETLEN!
EcMis

EOM21

EOM3!

Eumds

EUMSS

006641

1.=1+1B2+087+0
[

%]
"Ow236,+"S
12,

4

"]

E?
2400,
"]
g0ml
]

[}

[

Pw286,+37
18M2260 %256,V
32w206,+31
bw256,+0
245256 ,+088
BlL2*256,+4FT2
1.=1¢1B2+087+0
1.=1v1{B2+0B70
¢

sERENQO=-EQDRDRD
E9990=ERUCR/LEN
LEN
37
-1
-]
-1
-1
-1
12
5
39
-1
-1
-1
-1
-1
-1
-]
-1
-1
37
-1
-1
-1
-]
-1
37
4y
-1
-1
-1
-1
"]

JETOOD
JETDOA

JETRD
J1ETYPE
1ETIO
JICHILO
T1LINK
JPARNT
T1ETRAT
JETQBP
JETEOM
JETRSP
JETPAD
IRRING,PRING
JETLGA, ETLGN
JTERMT, STATI
JPORTO, PORTI
1SPRTO, SPRT]
JSUTAD,
I1BYTEL, PARTY
1ETOID

ETIND

JETDOO
JETOOA

Portion of File EQUIP.RB, Assembled Equipment

Table (Continued)

67

pet2 EQUIP

pi1110'epeod 00606818 8
gi111'eag0e@ DO67Al e
vl112'eeveee DUE7R! 2

Figure 8, Portion of File EQUIP.RB, Assembled Equipment
Table (Concluded)

68

INTERFACE
ADAPTER

ASYNCHRONOUS
LINE ADAPTERS
Port Subport
Output | Input Output | Input
24 24 1 1
24 24 2 2
24 24 3 3
24 24 4 4
24 24 5 5
24 24 6 6
24 24 i/ 7
24 24 8. 8.
24 24 s 9.
24 24 10. 10
24 24 11 11
24 24 12 12
24 24 13 13.
24 24 14 14,
24 24 15 15,
24 24 16 16.

Figure 9. ET Entries for DCM Devices for Lab System

69

Field-Test System

70

INTERFACE ASYNCHRONOUS
ADAPTER LINE ADAPTERS DIGITAL I/0
Inputs Outputs
(ETDID) (ETDOD)
Port Subport First First
Input Device | Output Device
Output | Input | Output | Input | (BSSSS) | (DDDDDD) | (BSSSS) | (DDDDDD)

41 40 0 0 0 73 0 62

41 40 1 1 2 73 62

41 40 2 2 4 73 . 62

41 40 3 3 6 73 12. 62

41 40 4 4 8. 73 16. 62

41 40 5 5 10, 73 20. 62

41 40 6 6 12, 73 24, 62

41 40 7 7 14, 73 28, 62

43 42 0 0 16. 73 63

43 42 1 1 18. 73 63

43 42 2 2 20. 73 . 63

43 42 3 3 225 73 12 63

43 42 4 4 24, 73 16. 63

43 42 5 5 26. 73 20, 63

43 42 6 6 28. 73 24. 63

43 42 7 7 30. 73 28. 63

45 44 0-7 0-7 0-14, 74 0-28. 64

47 46 0-7 0-7 } 16.-30. 74 0-28. 65

51 50 0-7 0-7 0-14, 75 0-28. 66

53 52 0-7 0-7 | 16.-30. 75 0-28. 67

55 54 0-7 0-7 0-14, 76 0-28. 70

57 56 0-7 0-7 | 16.-30. 76 0-28. 71
Figure 10. ET Entries for Asynchronous Devices for 64-Line

INTERFACE ASYNCHRONOUS
ADAPTER LINE ADAPTERS DIGITAL I/0
Inputs Outputs
(ETDID) (ETDOD)
Port Subport First First
Input Device | Output Device
Output | Input |Output | Input (BSsss) | (ppppbb) | (BSSSS) | (DDDDDD)
43 42 1 1 0 71 0 66
43 42 2 2 2 71 4 66
43 42 3 3 4 71 8. 66
43 42 4 4 6 71 12, 66
43 42 5 5 8. 71 16. 66
43 42 6 6 10. 71 20. 66
43 42 7 7 12. 71 24, 66
43 42 8 8 14, 71 28, 66
45 44 1 1 16. 71 0 67
45 44 2 2 18, 71 67
45 44 3 3 20. 71 . 67
45 44 4 4 22, 71 125 67
45 44 5 5 24, 71 16 67
45 44 6 6 26. 71 20. 67
45 44 7 7 28, 71 24, 67
45 44 8 8 30, 71 28. 67
Figure 11, ET Entries for Asynchronous Devices for l6-Line

Field-Test System

71

(177777 octal). The lists are pointed to by ETEOM in each
ET entry. If no EOM checking is to be done, ETEOM must
point to a location containing -1. Figure 6 presently con-
tains duplicate lists (EOMl and EOM4). The lists are longer
than needed so that additional EOM character codes can be
added octally if needed, The 30 words in lines 196-225 are
equivalent to the following seven words (except that the

order of list EOM5 is changed):

EOM5: 43
EOM1:

EOM4: 37

EOM3: -1

EOM2: 12

5

30

-1

11. One word of storage must be provided for each group of 16
contiguous digital outputs which are to be used in the test,
as shown in lines 226-229 as DO66A, D066B, DO67A, and DO67B.
The words are pointed to by ETDOA in each ET entry which
uses digital outputs. The storage must be initialized to

zero.

A number of conventions were observed in generating the file in
Figure 6. The Macro Processor was used to perform certain substitutions
and the NOVA assembler pseudo-op .DUSR (see lines 49-74) was used to
perform others. The Macro Processor performs its substitutions prior
to the assembly. The differences can be seen between the file EQ and
the EQUIP (symbolic) portion of the assembly listing. The macro TTY33
defined at lines 93-95 of Figure 6 changes TTY33 in 1line 97, for
instance, to I274l. The pseudo-op .DUSR causes the substitution to
be made internally by the assembler. Therefore, the symbolic portion

72

of the assembly listing gives the symbol and the assembled code shows
the substituted value. For instance, on line 8 of page 1 of Figure 8,

the name I is assigned the value 111 On line 56 of the same page,

the I is shown in the symbolic code gnd the 111 is the rightmost
portion of the assembled value of 131118.
The labels E3, E4, etc., (as well as E@§, El, and E2) for each ET
entry are needed to provide values for the cross-reference fields
CHILD, LINK, and PARNT. A better tactic than using the arbitrary
labels, however, would be to use the device names for labels, to use
TY2 as a label rather than E3 at line 100 of Figure 6. The field
ETYPE should be used to group like devices and to distinguish unlike
devices, for instance: TT for TTY's, TY for IBM 274l's, CT for the
control TTY, DS for displays, LN for communications lines, CN for
multiplexor device-controllers, PT for printers, etc. Several

combinations should be used to distinguish displays with different

characteristics, for instance.

The label E@END (line 88) is used to define the end of entry E@
and in defining ETEND (line 78). The label E9999 (line 192) is used
to define the end of the last ET entry and in defining ETENT (line 194)
and the length of ETREC (line 80). The symbol LEN (line 193) has the
value of the length of an ET entry and is used in defining ETENT and
ETLEN.

The equivalences for A through W at lines 49-54 are provided for
use in giving values to the field STATI although only I and U should
normally be used for initial values. The equivalences for W through O
at lines 54-58 are for use in defining parity type (PARTY). The

meanings are:

one (parity bit set to a constant 1)

t
[]

even parity

zero (parity bit set to a constant @)

73

no parity bit

odd parity
Only the values E and O are used by emulator programs.

The equivalences at lines 64-74 are used to define terminal type
(TERMI). Those at lines 67-69 are of the earlier, arbitrary type

which have not been updated.

The equivalences at lines 59-63 are used so that the fields ETRAT,
BYTEL and PARTY in the ET entries may be given symbolic values rather
than absolute values. Only the equivalence statement has to be changed

to assign a new value rather than changing each ET entry.

FUNCTION

Each Equipment Table entry defines one equipment component of the
SUT. 1In the simplest case, one ET entry is used to describe a point-
to-point communications channel, possibly a pair of modems, and the
single device attached to the channel. In a more complicated case,
one entry describes the channel (and possibly modems), one is used
to describe each controller or terminal (in a multipoint configuration),

and one is used to describe each device at each terminal.

In the latter case, cross references (CHILD, LINK, and PARNT) are
used to describe the hierarchical structure. As an example, the
hierarchical ET structure described in Figures 6 through 8 is shown
in Figure 12, Since each ET entry can reflect only one of each
relationship, the arrows and labels indicate which relationship is
expressed in the ET. Using this method of cross-referencing most
configurations of equipment can be easily described. The number of
levels and the number of entries at each level are limited only by

core memory.

74

CT®

} Lnk
DS14
lLINK
TY1

| LINK
TY2

l LINK
TY3

| LN
TY4

TY15
} vk
TY16

} Link
CHILD

LN5

PARNT

Figure 12,

Equipment Table Hierarchy

75

Information in the Equipment Table is used by the Scenario
Interpreter and by the Exec and is available to a scenario by means
of certain scenario instruction types. The scenario may examine
information, or in limited cases, change information in an ET entry.
A scenario may access its own ET entry, or, through the relationships
described above, access the ET entry of a relative, a relative's
relative, and so on (in the direction of the arrows only). This
capability of a scenario becomes increasingly useful as the equipment

being emulated becomes increasingly complex.

The set of Registers of the current scenario associated with a
particular device is pointed to by the first word (ETR®) in the ET
entry for that device. The first word of an ET entry is pointed to
by the relationship pointers described above. Using instruction
types h and then g and p (as defined in Volume 2 Table XVII), a
scenario A running on device LN5 (as shown in Figure 12) can access
the ET entry and Registers of scenario B running on device CN6, and
then gain access to the ET entry and Registers of scenario C running
on DS8, and so on. An example of this method of communication among
devices is shown in the scenario segments in Figure 13.%* In this case
LN5 running with scenario A establishes the linkage to DS8 running
with scenario C. Scenario A checks Register 9 of scenario C to
determine when DS8 is ready to send a query. When scenario A senses
that R9 = 1, it then performs a specified function (function 1) and
resets R9 to zero. This zero indicator is put into R9 of scenario C,
which senses the indicator and proceeds to send the query. Meanwhile
CN6 running with scenario B is engaged in performing function 2, which

may or may not be involved in communication with LN 5 or DS8.

* The scenario library SCENLIB, shown in Figure 35 in Appendix VI,
establishes the macros used in this example.

76

Also, using instruction type h, and then instruction types Y or n,
scenario A can examine the bit indicators (ETIND) of the ET entry of
device CN6 and then DS8, etc. There are other scenario instructions
which access the Equipment Table contents, and can be used in numerous
ways to enhanﬁe scenario abilities and efficiency. A complete pre-

sentation of scenario instructions is given in Volume 2, Table XVII.

The technique of utilizing the Equipment Table to examine or pass
information among devices can be useful, for example, when emulating
a polled network. Assume, for instance, that CN6 was a controller
and DS8 and DS9 were polled terminals. Then by making use of the cross
references in the Equipment Table, the scenario for CN6 could poll the
scenarios for DS8 and DS9 by examining indicator bytes or Registers to
determine which devices were active, ready to send, or ready to receive.
The individual terminal scenarios could send their queries and examine

responses when indicated by the controller scenario.

77

LN5
SCENARIO A
(sca)

CN6
SCENARIO B
(SCB)

DS8
SCENARIO C
(sce)

ALLOCREGS 15
C[START CN6 SCB
ETOREG § ¢ R1¢
R1§ CONTAINS ADDRESS
TO ET ENTRY OF SCA
ETOREG R1¢ 3 R11
R11 CONTAINS CHILD
POINTER (WORD 3) OF
R1§ WHICH IS ADDRESS
OF ET ENTRY OF CN6
ETOREG R11 3 RI12
R12 CONTAINS CHILD
POINTER OF R11 WHICH
IS ADDRESS OF ET
ENTRY OF DS8
L LAB1
GTR 9 RI2 R9
THE CONTENTS OF R9
OF SCC IS PUT INTO
RO OF THIS SCENARIO
B CONT 1 R9
IF R9=1 THEN GO TO CONT
D 1
J LAB1
OTHERWISE, DELAY 1 SEC.
AND JUMP TO LABI

C [START DS8 ScCC

function 2

ALLOCREGS 15
A 12
ALLOCATE 12 BYTE QUERY
BUFFER
5BUILD QUERY
+ ¢ 13 Rl1l
PUT ASCIT CR INTO RI11
- R11
ADD CONTENTS OF R11
TO QUERY BUFFER
g 1R9
R9 SET TO 1 INDICATES
THAT QUERY IS READY
LAB1
CONT ¢ R9
IF R9=¢ THEN GO TO CONT
D1
J LAB1
OTHERWISE DELAY 1 SEC
AND JUMP TO LAB1
CONT
JUMP HERE WHEN R9 RESET
TO ZERO BY SCA

+

=

5*

SEND THE QUERY

Figure 13.

78

Example of Device Communication Through Scenarios

LN5 CN6 DS8
SCENARIO A SCENARIO B SCENARIO C
(sca) (SCB) (scc)
L CONT
function 1
LDR @ R9

R9 SET TO ZERO

PTR R9 9 R12
PUT CONTENTS OF CURRENT
R9 INTO R9 OF SET OF
REGISTERS POINTED TO
BY R12
(DS8)

Figure 13, Example of Device Communication
Through Scenarios (Concluded)

79

SECTION VI

REAL-TIME EMULATOR SYSTEM GENERATION

INTRODUCTION

The generation of the real-time emulator system is a four-step

process which can be represented as follows:

input SSUB source ASM RB)
files = files ==t files

RLDR MKABS

EQUIP.RB| __ | 2705.S5V ———> SCINT.BN

Exec
.RB
files/

The four steps are execution of the Macro Processor (SSUB),
execution of the NOVA assembler (ASM), execution of the NOVA relocat-
able loader (RLDR), and execution of the DOS command MKABS. The first
two steps must be performed separately for each assembly module which
is to be changed (including the Equipment Table which is not considered
a part of the Scenario Interpreter). The last two steps must be
performed once each whenever one or more assembly modules (including
those of the Exec) have been changed. In creating the Executive from
the various source files, there is some flexibility available in
defining buffer sizes, storage requirements, and parity checking on
SUT terminals. These options are described in detail in Volume 6 of

this series in the User Information Section.
SSUB

For purposes of this discussion the general form of the command

to execute the Macro Processor is assumed to be:

SSUB input-file source-file macro-libraries

80

The input-file names, source-file names, and the macro libraries
needed for the Scenario Interpreter are given in Table VII. The
implementation uses of the Macro Processor are also discussed in

Section III.
To execute the Macro Processor, type on the control TTY;

SSUB II ININT RTOSLIB LIB LIB%)
or

SSUB EQ EQUIP

where II and EQ are the input files; ININT and EQUIP are the output
files; RTOSLIB, LIB and LIBl are libraries; and) represents the
carriage-return key. The macro libraries must be in the form of the
output files produced by the macro library generator (MACDEF), the

file LIB.ML, for instance. Unlike the last three steps, the output
file (ININT or EQUIP, above) must be absent from the DOS file directory
before executing SSUB.

If one of the three macro libraries must be changed, it must be

read into the NOVA using LIB, for instance, as the input file name.
Typing
MACDEF LI%/

on the control TTY will execute the macro library generator which will

generate the macro library LIB.ML,
ASM

An output file from the Macro Processor (Source File) must next

be processed by the Data General assembler by typing, for instance:
ASM/L/X SLPT/L ININ{)

The output file produced is a relocatable, binary file, ININT.RB in
this case. Because the switches /L/X and the line printer $LPT are
specified, an assembly listing including the source file and cross

reference list will be produced on the line printer.

81

TABLE VIT

Input File Names for Emulator System

Input Source Macro

File File Library

Name Name Names
EQ EQUIP s
SI SCINT RTOSLIB, LIB, LIBI
CI CMINT RTOSLIB, LIB, LIBl
II ININT RTOSLIB, LIB, LIBl
FC FETCH RTOSLIB, LIB, LIBI
TP TESTP RTOSLIB, LIB, LIB1
S1 SUBR1 RTOSLIB, LIB, LIBI
§2 SUBR2 RTOSLIB, LIB, LIB1
AF ALF RTOSLIB, LIB, LIBI
ERROR ERMSG RTOSLIB, LIB, LIBI
FTC FTCHG RTOSLIB, LIB, LIBI1
DW DUMPW RTOSLIB, LIB, LIBI
DH DUMPH RTOSLIB, LIB, LIBI
IS ISCEN -

82

RLDR

Table VIII lists the assembly modules needed by the Data General
relocatable loader to generate the real-time software for each of the
two versions.of the emulator. The files used by RLDR are those with
the .RB suffixes. A list of the module names (excluding the suffix)
must be given to RLDR. These can be typed from the list in Table VIII,
if desired; however, the system tapes for each of the emulator
versions contain a file called LOADLIST which is a list of the file
names needed for each version. To execute RLDR, type on the control

TTY:
RLDR/Z MAP/L @LOADLISTQJ

The output file produced by RLDR is in a form suitable for execution
under control of DOS, Although the real-time emulator cannot be
executed under DOS, the step is a necessary preliminary to producing
the required file. The output file is named RT0S.SV since RTOS is
the first file in the list in LOADLIST. Since MAP/L is specified the
core map produced by RLDR will be placed in a DOS disk file called
MAP. It can be listed by typing:

PRINT MA%J or PRINTL MAP)

The MAP file should be saved on tape with the other files for future
reference. The file RT0S.SV should also be saved since octal patches,
if needed, can be made to it, with the MAP file for guidance. The
fourth step must then be performed with a new or patched RTOS.SV.

MKABS

The DOS command MKABS produces a file which can be executed
independently of DOS. The command is executed by typing:

MKABS /2 RTOS SCINT.BN INIT/%!

The octal equivalent of INIT (obtained from the MAP file) is the

83

Inputs to Relocatable Loader

TABLE VIII

Assembly Module
Name

Lab
System

Field-Test
System

Exec

*RTOS

*RTIN
LPT
MTA
TRV
DCM
DCMT
ASYNC
SCMGT
PAGE
DSK
DMP

E T o T A B R

<ok oMo

LT T]

LT B R

ET

*EQUIP

»

»

Scenario Interpreter

SCINT
CMINT
ININT
FETCH
TESTP
SUBR1
SUBR2
ALF
ERMSG
*FTCHG
DUMPW
DUMPH
ISCEN

E T T T R B I T

LT T - T I - A I ST o T T

* Different versions needed

84

value to be used in the command. MKABS uses RTOS,SV as the input file
and produces SCINT.BN as the output file. SCINT,.BN is the real-time
emulator program, containing the Exec, the Equipment Table, and the
Scenario Interpreter, It may be executed, by means of the DOS program
EXEC, by typing:

EXEC SCIN@Z

A more convenient method of executing SCINT.BN, however, is discussed

under Operating Instructions for the Scenario Interpreter,

Disk Requirements

After a system is generated, it is not necessary to maintain all
the binary and source program files on disk. These files should be
saved on tape, and disk space freed to allow space for additional
macro libraries and scenarios., Table IX indicates the disk require-
ments of the files which should be retained on disk during emulator

operation,

85

Table IX

Disk Requirements for Emulator System

Size
File Bytes/Pages Comments
DOS,etc 101221/210 Includes basic support software after @REMAL@
has been executed, Includes SYS.DR, MAP.DR,
EDIT.SV,XFER,.SV,SYS.LB,RLDR.SV,0EDIT.SV
PRINTL. SV, REMAL, BLDR. SV, EXEC.SV,ASM, SV
MACDEF.SV 14976/30 Macro Processor. See MTR 2677 Volume 3.
SSUB.SV 20736/41 Macro Processor. See MTR 2677 Volume 3.
SCENLIB.ML 242/1 Lower—-case scenario instruction op-codes. See
MIR 2677, Volume 2, Table XIV and related text.
CVT.SV 31488/62 Scenario Assembler. See MIR 2677, Volume 4.
SUTTAB 384/1 Scenario Assembler. See MIR 2677, Volume 4.
DEVTAB 1792/4 Scenario Assembler. See MIR 2677, Volume 4.
RTOS.SV 32512/64 Real-Time Emulator. See MTR 2677, Volumes 5 and 6.
SCINT.BN 33514/66 Real-Time Emulator. See MTR 2677, Volumes 5 and 6,
P 30/1 Real-Time Emulator. See MTR 2677, Volumes 5 and 6.
(& 3/1 Real-Time Emulator. See MTR 2677, Volumes 5 and 6.
LOADLIST* 130/1 Real-Time Emulator. See MTR 2677, Volumes 5 and 6,
DATAR.SV 29056/57 Data Reduction Program. See MIR 2677, Volume 7.
SUMRY.SV 27904/55 Data Reduction Program. See MTR 2677, Volume 7.
TLIST.SV 27264/54 Data Reduction Program. See MIR 2677, Volume 7.
CTABS 1664/4 Data Reduction Program. See MIR 2677, Volume 7.
ERFILE 420/1 Data Reduction Program. See MIR 2677, Volume 7.
TREL.SV 26240/52 Data Reduction Program. See MTR 2677, Volume 7.
MASTR. SV 17024/34 Data Reduction Program. See MTR 2677, Volume 7.
MAP 3752/8 Core map of RT0S.SV and, thus, of SCINT.BN
NOTES 1926/ 4 Text description of system. Should be updated
when changes made in public or private copy.
FILECH.BN 4806/10 Verifies file validity on disk. See Reference 3.
MTLIST.BN 3606/8 Physical tape dump for MT1l, See Reference 4.
Total 3563667738

* When used, also need

86

EQUIP.RB and .RB files for Scenario Interpreter and

Exec.

SECTION VII

REAL-TIME EMULATOR

INTRODUCTION

The Scenario Interpreter is the real-time, emulator application
program which operates in conjunction with the Real-Time Exec, a multi-
tasking, application-oriented executive program. The Scenario
Interpreter executes commands used to exert gross control over the
run, executes scenarios which describe the actions to be taken in
emulating terminal and operator functions, and records real-time
events on a log tape. The Scenario Interpreter and the Real-Time

Exec perform all the functions of the real-time emulator run.

SYSTEM FLOW

As shown in Figure 14 the real-time emulator system as well as
the internal scenarios to be used must reside on disk before a run
can be initiated. The Scenario Interpreter program (running under
the Real-Time Executive) is then started by input from the control
teletype. Once the emulation has begun, the teletype may be used
for both output messages and input commands for the run. The events
of the emulation are recorded on the log tape during the run, and
this tape is used at the completion of the runm for analytical purposes.
If any dumps of the emulator system are requested during the real-time

run, they will be printed on the line printer during the run.

OPERATING INSTRUCTIONS

External control over a real-time emulator run is exerted primarily
through the control TTY. The run is started under DOS conventions.
Once started, emulator conventions apply. In existing Equipment Tables,
the control TTY is defined as device CTO. Device CTO is made to look

87

Emulator

Internal
H_____/

Exec
SCINT

Input from
Control TTY

DUMPS
(if any)

Output
Messages

Figure 1l4. System Flow for Real-Time Emulator

88

as much like other (emulated) devices as possible. CTO can be used
as an emulated device if desired although responses must be supplied
by the user, of course. Unlike other devices, CTO is operated in
echo-plex mode so that keystrokes will cause printing on the TTY.
Unlike DOS, the Exec does not echo back a carriage-return and a line
feed when the carriage return key is depressed. Therefore, the
symbo].i is used to denote depression of the carriage-return key and
echo back of both carriage-return and line-feed under DOS. Under Exec
control, both keys must be depressed and they are represented below
by CR/LF. It is assumed that the list of EOM characters pointed to
by ETEOM in the ET entry for CTO includes LF (128), CANCEL (308), and
BREAK (5).
Startup

If not already mounted, a scratch tape is needed on tape drive O.
The real-time run is most conveniently started by typing on the

control TTY:

@qu

This input causes DOS to treat the file P as a list of DOS commands.
The file P contains:

RELEASE MTO;
TYPE C;
EXEC SCINT;

This set of commands causes the contents of file C (containing WAITJ)
to be typed on the control TTY. The log tape is then rewound if it
was left other than at the load point by a previous real-time rumn or
by an aborted Data Reduction run. While the tape is rewinding, the
real-time emulator program (SCINT.BN) is called and initialization is

begun. All further control TTY inputs must follow Exec conventions.

89

Control TTY Inputs

Run ID

After the word 'WAIT' is typed on CTO, the user must wait for the
message 'ENTER RUN ID' to be typed on CIO before taking any further
action. The user must then enter a character string, terminated by
CR/LF, which will be written on the log tape as the run identification.
The run identification consists of all characters typed up to but not
including the first control character (those with octal values less
than 40) or the first 2010 non-control characters. If an error is
made in entering the run ID, simultaneous depression of the control
and X keys (Control-X) will cancel the input and the user can start
again. Almost immediately after entry of the run ID, the emulator
will write the run ID and the other two history records on the log
tape in one burst and then type "READY" on CTO. The emulator is now

ready to accept commands so as to start emulation.
Commands

The emulator will remain in the idle state until a command is
entered from CTO or from another emulator module or until an (unsolicited)
response is received from the SUT, from CTO, or from another emulator
module., Even then, the emulator will return to the idle state until
one or more START commands are executed by the emulator. Commands are
described in Volume 2 of this series. Commands from CTO (or another
emulator module) must be preceded by an ASCII left-bracket character
(Control-K). With a single START command, the user can execute a control
scenario, if he desires, which can automatically START other devices
and execute other commands (by means of the type-C scenario instruction)

and any of the scenario instructions defined in Volume 2.

CANCEL Input

Any CTO input can be cancelled by depressing Control-X. The input
will not be logged, and CR/LF will be typed as an acknowledgement.

90

BREAK Output

If the first (or any odd) character of a CTO input message is a
BREAK character (input by depressing Control-E), the input is con-
sidered a BREAK input whose purpose is to BREAK or stop output on CTO
of error messages (see ERROR command) and the monitor output of
queries and responses (see MONITOR command). Error messages, queries,
and responses already queued for typing, will be typed, but no more
will be queued until another ERROR or MONITOR command causes them to

be queued again.

Resgonses

A CTO input not in any of the above classes is considered a
response.- If no scenario is operating for CTO, they will be treated
as unsolicited., If a scenario is operating and is waiting for a
solicited response, the response will be processed immediately.
Otherwise, the response will be queued until the scenario requests

it or until the scenario terminates.
Shutdown

The real-time run is terminated by execution of a QUIT command
from CTO, another emulator module, or a scenario. If the run does
not terminate immediately, the emulator is so busy that the QUIT
command (which is purposely given the lowest possible priority) 1is
never executed because of a continuing string of higher priority
tasks. One or more devices must be STOPped for the QUIT command to
be executed. When the QUIT command is executed, two lines of
emulator statistics are typed on CTO and the NOVA halts. By depress-
ing Continue on the panel, DOS will be brought back in core and
executed. DOS will type 'DOS REV XX.' and it will halt. Depressing
Continue again will cause 'R' to be typed, and DOS is again in control.
If desired, the Data Reduction program can be executed for the run just

completed or any DOS function can be performed.

91

ERROR MESSAGES

The high-order digit of the printed error message number has been
used to classify the error messages generated by the Scenario Interpre-
ter as to seriousness. The most serious errors correspond to the
highest digit; The ten error message classes are given in Table X.
General comments are also included as to the kinds of errors
assoclated with each class and the system action following detection

of the error.

Table XI lists and explains all the error messages generated by
the Scenario Interpreter. Each three-digit number shown is a part
of the message. The message itself represents the only use in the
Scenario Interpreter of the three-digit numbers. Elsewhere, error
messages are referenced only by the two low-order digits, and the
table is in order based on these digits. The convention (6)40 has
been used to indicate the internal and external message numbers,

The table gives the meaning and cause of each error message as well

as the subroutines and modules which generate the message.

92

Table X

Error Message Classes for Scenario Interpreter

Class Meaning
9 Not used. Reserved for severe errors which would abort

real-time run.

8 System errors. Bring to attention of system programmer.
Action terminated for device and device made inactive.
(Same as if end of top-level scenario reached).

7 Relatively serious problem., May be system error or user
error. Action terminated as for class 8.

6 . Relatively serious user error, probably in a scenario.
Action terminated as for class 8 unless able to proceed.

5 Error encountered in attempt to free a block of allocable
core memory. Probably a system error although improper
use of a type-F scenario instruction or previous improper
action with Registers could cause it. System attempts to
continue with emulation of device.

4 User error. Improper use of a command. Command not
executed. Action continues as for class 5.

3 Unable to execute command. May be a problem of synchroni
zation between devices. Action continues as for class 5.

2 Unable to execute command. Erroneous command operator or
operand. Action continues as for class 5.

1 Usually an indication of an action taken although an error
may be present also.

0 Not an error. Indication of action taken.

93

Table XI

Error Messages for Scenario Interpreter

800

801

502

503

504

406

507

210

211

312

Message
STACK OVERFLOW

STACK UNDERFLOW

NO RS TO FREE

ILLEGAL FREE
ADDRESS

NO BUFFER TO FREE

TOO FEW REGS FOR
SUBSCENARIO CALL

NO REGS TO FREE

COMMAND NOT
IMPLEMENTED

INCORRECT COMMAND
OPERATOR

EQUIPMENT
UNAVAILABLE

Meaning

System error. Attempt to PUSH a value into
stack portion of RS when stack full. (Sub-
routine POSH@, POSH1l, POSH2, or POSH3).

System error. Attempt to POP a value from
stack portion of RS when stack empty (Sub-
routine PUPP, PUP1l, PUP2, or PUP3).

System error. Attempt to free RS when STACK=0.
(Subroutine FRRS).

Probably a system error. Attempt to free RS
or buffer whose address not in allocable core.
(Subroutine FRRS or FRBF).

Probably a system error. Attempt to free a
non-existent buffer, i.e., pointer =
(Subroutine FRBF).

Register RGCAL not allocated in current set so
that execution of a SUB command is ruled to be
invalid. (Subroutines CMINT or ALRG).

The set of Registers pointed to may have been
freed previously or the contents of the
Register may have been altered erroneously by
a scenario. Otherwise, a system error. (Sub-
routine FRRG).

Specified command (MOD or TRANSFER) has not
been implemented. (Subroutine CMINT).

Erroneous command operator. (Subroutine CMINT).

Attempt to START a device whose status is other
than 'I' or 'S'. (Subroutine CMINT).

94

Table XI (Continued)

Error Messages for Scenario Interpreter

613

114

215

216

217

020

121

422

223

Message

OUT-OF-RANGE
REG #

DEVICE STOPPED

VALUE NEEDED FOR
COMMAND

UNKNOWN DEVICE
NAME IN COMMAND

INCORRECT
SCENARIO NAME

ACTION TAKEN

SUB COMMAND LEGAL
ONLY FROM SCENARIO

INVALID SUB-
SCENARIO COMMAND
REFERENCE

ONLY "ON" OR "OFF"
LEGAL

Meaning

Attempt to access Register not allocated in
current set (module FETCH) or in another set
(module ININT - type g or p scenario instruction).

End of top-level scenario reached by normal
operation or simulated due to serious error.
(Module FETCH).

Numeric (decimal) value missing from SCALE
command or numeric portion of equipment name
missing from MONITOR, RESTART, START, STATUS,
or STOP command. (Subroutine CMINT or FNENT).

Unable to find equipment name specified in
MONITOR, RESTART, START, STATUS, or STOP command
in Equipment Table. (Subroutine FNENT).

Unable to find scenario name specified in START
or SUB command in Scenario Directory (Sub-
routine CMINT).

Indicates successful execution of DUMP, ERROR,
MONITOR, RESTART, SCALE, START, STOP, or SUB
command (Subroutine CMINT).

No rational way to execute a SUB command from
one device for another since they operate
asynchronously (Subroutine CMINT).

Attempt to execute a SUB command with no scenario
specified when no uncompleted subscenario exists
for device (RGCAL = @) or when Register RGCAL
does not point to a valid set of Registers
(C(RGR@) # RGR@). (Subroutine CMINT).

First operand of LOG command specifies 'ALL' and
second operand specifies neither 'ON' nor 'OFF'
(Subroutine CMINT).

95

Table XI (Continued)

Error Messages for Scenario Interpreter

224

125 LOG ACTION COMPLETE

826

327

330

631

Message

ONLY "A", “N", OR
"U" LEGAL

STATI INCORRECT

DEVICE INACTIVE OR
STOPPED

DEVICE NOT STOPPED

QUERY BUFFER
OVERFILL

Meaning

First operand of LOG command specifies 'THIS'
OR equipment name and second operand specifies
none of 'A', 'N', or 'U'. (Subroutine CMINT).

LOG command has processed as much as it can of
the third operand. Each component of this
operand is processed separately and program
has reached illegal component or end of command,
Rather than attempting in an iterative program
to separate the cases of missing third operand,
error in nth component but first n-1 of them
were processed, or all components were correct,
a combination message is used which is intended
to cause the user to verify that there was no
error in the third operand. Note that for this
type of SUB command, the SUBSCENARIO form is
invalid and no character (such as a blank) may
follow 'SUB' in the command instruction or the
program will assume a scenario is specified.

System error. Instruction Interpreter attemp-
ting to emulate device whose status (STATI) is
neither 'A' nor 'T'. (Module FETCH.)

Attempt to STOP a device whose status (STATI)
is 'I', 'T', 'S', or 'U'. (Subroutine CMINT.)

Attempt to RESTART a device whose STATUS (STATI)
is neither 'T' nor 'S'. (Subroutine CMINT.)

Attempt to fill query buffer beyond end by
scenario instruction of type 5, N\, or @. Note
that if an error message intervenes after
generation of query buffer,but before filling
it, the error message buffer will displace the
query buffer and the error message buffer will
then be filled by the instruction. (Module
ININT.)

96

Table XI (Continued)

Error Messages for Scenario Interpreter

Message

732 NO QUERY BUFFER TO
FILL

333 DEVICE STOPPED BY
TYPE-7 INSTR

634 OTHER REG SET DOES
NOT EXIST

035 TTY OUTPUT
SUPPRESSED

336 ASSEMBLY ERROR IN
SCEN

337 EQUIPMENT TYPE
MISMATCH

Meaning

This message will only appear if there is no
query buffer (or error message buffer)
associated with the device and a scenario
instruction of type 5, \, or @ is executed.
This condition will only occur prior to
generation of the first buffer or following
execution of a type-E scenario instruction
and before generation of next query buffer or
of next error message buffer which is not the
result of a type-E instruction.

A RESTART command is not legal for the device
since it was STOPped by a type-7 scenario
instruction rather than by a STOP command so
that there is no current task which can be
RESTARTed, See Miscellaneous Notes section.
(Subroutine CMINT).

Attempt to execute a scenario instruction of
type g or p when the other set of Registers
does not exist (pointer = @#). (Module ININT).

A BREAK input was recognized and executed.
(Module SCINT.)

First byte of internal scenario is non-zero.
Scenario needs to be reassembled after correc-
tion of errors before it will be acceptable for
use with START or SUB command. (Subroutine
CMINT) .

Scenario may not be used with specified device
(START command) or with current device (SUB
command) because scenario is not a universal
scenario and the second byte of the internal
scenario fails to match TERMT in the ET entry
for the device. (Subroutine CMINT).

97

Table XI (Concluded)

Error Messages for Scenario Interpreter

Message
640 BEHIND SCHEDULE

641 WAIT INSTR
IGNORED

Meaning

A type-W scenario instruction was executed
after the specified time had passed. The
amount of time by which the task is behind
schedule, in milliseconds, is contained in
the start transmission time fields of the
buffer. Processing continues for device.
(Module ININT.)

Type-W scenario instruction may not specify
a time in excess of approximately 4.62 hours
because of conversion problems. Instruction
ignored and processing continues for the
device., (Module ININT.)

98

DEVICE STATUS

Figure 15 shows all the valid state (STATI) transitions which

can occur for a device. These transitions occur as the following

functions are performed:

I—A

A—1

A—T

A—W

A—S

W—A

W—T

S—A

T—A

occurs when a START command is successfully executed

for the device.

occurs when the end of the top-level scenario (RGRET = 0
for the current set of Registers) is reached for the
device.

occurs when a STOP command is successfully executed for
the device.

occurs when a time delay type of scenario instruction
(type D, W, or d) is executed.

occurs for the current device when a type-7 scenario
instruction transfers control of the task to another
device.

occurs upon the expiration of a time delay caused by
execution of a scenario instruction of type D, W, or d.
occurs when a device is STOPped while executing a
scenario instruction of type D, W, or d.

occurs when a STOPped device 1s STARTed or RESTARTed
after the transition from T to S has taken place or

for the new device during execution of a type-7 scenario
instruction.

occurs for a STOPped device after completion of execution
of the current scenario instruction or upon receipt of

a response following execution of a scenario instruction
of type Ror I

occurs when a RESTART command is executed for a STOPped

device before the T to S transition has taken place.

99

Figure 15. State Transition Diagram

100

u device is unavailable and status cannot be changed by the
emulator (can only be changed in non-real-time by

reassembly of the ET or with the octal editor).

RING COUNTERS

There is a pair of ring counters in each ET entry (for each
emulated device). They are used to sequence number tasks of types 6
(unsolicited responses), 7 (solicited responses), and 8a (newly STARTed
devices), so that only one task of these types at a time (per device)
can proceed past a certain point in the Input Processor (types 6 and 7)
or the Instruction Interpreter (type 8a) so as to preserve reentrancy.
The ring counter RRING (the response ring counter) is used to count
and sequence number such tasks. The subroutine CHEKR is used to main-
tain RRING. CHEKR fetches RRING and uses it to sequence number the
task (by setting RSEQU), steps RRING, and stores the updated value.
CHEKR then compares RSEQU with PRING (the processing ring counter).

If they are equal, the task is allowed to proceed. Otherwise, the
task remains in CHEKR until PRING equals RSEQU. Thus, a queue of
such tasks is maintained for each device, when necessary, and the
tasks are released one at a time in the order in which they reached

CHEKR.

The processing ring counter (PRING) is maintained by the sub-
routine STEPR. STEPR is called when task types 6 (unsolicited
responses), 7b (type R or I scenario instruction executed), or 7c
(end top-level scenario) terminate and when certain tasks of type 8a
are generated (when a STOPped device is STARTed, the STOPped task
must first be terminated). The only function performed by STEPR is

to step PRING so that the next sequence numbered task may proceed.

These steps are shown in Figure 16 which is a modification of
the state diagram in Figure 15. 1In Figure 16, when a device is
STARTed, its status (STATI) changes from I to A. RRING is alsd

101

F o
®"
® RRING used and stepped by CHEKR
@ PRING stepped by STEPR
Figure 16. Ring Counter Changes

stepped and the new task may be queued. When the end of a top-level
scenario 1s reached for a device, its status changes from A to I and

PRING is stepped.

If a STOPped device is STARTed (not RESTARTed), its status
changes from S to A, When the STOPped task is terminated, PRING is
stepped for the old task. RRING is then stepped for the new task
(which may be queued.)

The loop around the I status indicates no change in status but
the fact that if the device is inactive, receipt of an unsolicited
response first causes RRING to be stepped and then PRING. Unsolicited
responses are queued since a change in device status while the response
is queued may cause a change in the type of response. The final deter-
mination as to the type of response is made when the response leaves

the queue.

Similarly the loop around the A status indicates no change in
status but the execution of a scenario instruction of type R or I
which causes PRING to be stepped followed by a new task which steps
RRING. Had one or more responses already been queued for the device,

the stepping of PRING would allow the first of these to advance.

The discussion also indicates possible problems regarding use
of the type-7 scenario instruction. ¥For a type-7 instruction to be
valid, the device to which control of the task is transferred must
be STOPped. Thus, for this new device there already exists a sus-
pended Scenario Interpreter task. If a task which has been generated
for one device is allowed to terminate for a second device, PRING
will not get stepped at the end of the task for the old device but
for the new device. Thus, since the ring counters provide for 25610
sequence numbers, the old device would have to accumulate a total of
255 queued responses (which would tie up 255 Exec clock blocks)

before any further activity could occur for the old device. The new

103

device should be able to resume activity when a new task is generated
for it, but the original STOPped task would be destroyed without its
allocable core being freed when the task which executed the type-7
instruction terminated. The first problem is the more serious one,
of course, but the latter ties up system resources for the duration
of the run, Therefore, a task which is started for one device should

be terminated for the same device to avoid these problems,

RESPONSE HANDLING AND LOGGING

The determination of whether logging is enabled or not for a
particular device and a particular buffer type is made at the time
the buffer is allocated. Changing the setting of the logging
indicators, with the LOG command, has no affect on logging of buffers
which have already been allocated. In the present implementation, if
logging is enabled in a given case, a long buffer (one with a long
header) is allocated and all long buffers are logged. For all long
buffers, the log processing bit in BFIND is set at time of allocation.
For either long or short buffers, one of the other five processing
bits is set (based on buffer type) at time of allocation. When a
task 1s done with a buffer or when it needs the buffer pointer space
in the RS for a new buffer to be allocated, it resets the appropriate
processing bit and attempts to free the buffer. If all six processing

bits are reset, the free attempt is successful,

Unlike the other four types of buffers, response buffers are not
automatically logged in all cases. Every long response buffer must
be logged by one means or another or it will not be freed and the
space will not be available for reallocation during the rest of the
run. A separate response queue is maintained for each emulated
device so that only one main task can be active at a time to process
a single response. When a response and its associated task leave the

queue, the determination is made as to whether the response is

104

solicited (or unsolicited) depending essentially on whether the device
is active (or inactive). If the device is inactive when the response
leaves the queue, the response will be logged automatically as un-

solicited, 1f logging is enabled, and the task is terminated.

If the device 1s active at the time the response leaves the
queue, the response will be logged automatically as solicited if
Response Indicator 2 in ETIND is set and logging is enabled., The
indicator must be set by executing a scenario instruction of the form
= 2 prior to the time the response leaves the queue. A long response
buffer can also be logged by executing a type-8 scenario instruction,
which specifies whether the response is solicited or unsolicited. The
use of both techniques will cause the buffer to be logged two or more
times, once automatically and once for each type-8 instruction executed.
Since there is no apparent advantage in logging a response more than
once and the solicited response indicator (bit O in BFIND) is initially
reset, execution of a type-8 instruction to log a response as unsolici-
ted does not reset the solicited response indicator. Therefore, once
the indicator has been set by either means, any further type-8 instruc-
tions will cause logging as solicited regardless of the value of the

first operand.

When a device is active, all responses received will be queued
until one is requested by the scenario by means of executing a scenario
instruction of type R or I. When such an instruction 1s executed, the
main task for the device is terminated at the end of execution of that
instruction., Further execution of the scenario is done by the task
associated with the next queued response which starts execution with
the scenario instruction following the R or I instruction. If any
responses are queued for a device when the end of the top-level scenario
is reached or when a STOPped device is STARTed (not RESTARTed), the
responses will be logged automatically as unsolicited. In addition,

when either event occurs, all indicators in ETIND are reset except

105

for the Command Indicator and the Monitor Indicator. Therefore, if
responses are to be logged automatically as solicited, each scenario
STARTed (not RESTARTed or executed by a SUB command) must set Response
Indicator 2,

DIGITAL I/0

Digital I/0 devices are installed on the field-test system but
not on the lab system. With the field-test system connected directly
to a SUT (without use of modems), the emulator must emulate the
actions of modems as well as devices and operators. For each device,
the SUT must believe it is communicating with the modem at its end of
a communications channel, To provide more direct and complete control
over the modem control lines (those not used for data transfer) than
that provided by most line adapters, the emulator uses digital input
devices to read the control signals set and reset by the SUT and
digital output devices to set and reset the control signals read by
the SUT.

The field-test system to be discussed is that containing 16
asynchronous communications channels and 8 synchronous channels. The
discussion is largely concerned with emulation of asynchronous devices,

with comments as to the extensions for synchronous devices.

The digital I/0 design was done by Data General. The intended
software design had to be modified to interface with the hardware as

delivered.

A digital output device contains the capability of setting 3210
digital outputs. Since a single NOVA instruction can set only 1610
outputs, the outputs associated with one device address are separated
into A and B groups. Since the outputs must be continuous rather than
momentary, a register is associated with each of the two groups of an
output device. Thus a NOVA digital output instruction loads either

the A or the B register and the SUT reads (senses) the bits in those

106

registers. Loading a register corresponds to the simultaneous setting
of some outputs to 1 and resetting of others to 0. Since Data General
provided no means of reading an output register, the emulator software
has to maintain a record of the status of each set of 16 outputs, in
the word pointed to by ETDOA. (Each such word contains the current
settings of outputs associated with 2 to 16 emulated devices, as
should be clear later.) When one or more digital outputs must be set
or reset for an emulated device, the software has to fetch the word
pointed to by ETDOA and either reset the appropriate bits by masking
or set them by ORing. The updated word then has to be stored back

in memory and loaded into the appropriate register.

The system contains four digital output devices with (octal)
addresses of 64, 65, 66, and 67. The outputs for a single digital
output device are numbered from 0 to 31 decimal (0 to 15 in the A
register, 16 to 31 in the B register). The system contains 128
digital outputs. Devices 64 and 65 are reserved for synchronous

emulation, and 66 and 67 are used for asynchronous emulation,

The digital input hardware is similar to that for digital output
but simpler. A digital input device allows reading (sensing) 3210
inputs. The inputs are grouped in A and B groups although a group
is simply a group of lines in the emulator hardware since, in this
case, the inputs read are in registers in the SUT. When one or more
digital inputs must be read and tested for an emulated device, the
appropriate digital input device and group (containing inputs
associated with 2 to 16 emulated devices) must be read, and the

appropriate inputs tested.,

The system contains two digital input devices with (octal)
addresses of 70 and 71. The inputs for a single digital input device
are numbered from 0 to 31 decimal (0 to 15 in the A group, 16 to 31 in
the B group). The system contains 64 digital inputs, Device 70 is
reserved for synchronous emulation, and 71 is used for asynchronous

emulation.
107

Figure 17 shows the types of connections between the NOVA rack
and the SUT, by way of the interface rack. On the left are the
connection points, and on theright is shown the type of path connecting
each pair of adjacent points. The jumpers between the A and B barrier
strips are intended to be the primary means of changing configurations.
For asynchronous devices, there are 16 A barrier strips and 16 B strips,
one of each per device. Up to 10 separate connections can be made
from an A barrier strip to 10 or less of the 24 connection points on a

B barrier strip.

The relationships within the interface rack should be clarified
by Figure 18, A single cable carries all 32 inputs or outputs (both
A and B groups) of a single digital I/0 device between the NOVA rack
and the interface rack. A single section of the interface rack
accommodates 16 emulated asynchronous devices. The normal wiring
needed for emulating Bell 103A modems is shown in the figure. Only
the digital I1/0 wiring is shown. For each emulated device, two
digital inputs and four digital outputs are shown although only one
of the inputs is used. Digital input device 71 is adequate for the
needs of all 16 emulated devices. Digital output devices 66 and 67
are needed to provide four outputs per emulated device, In the
diagram, the outputs are labeled from O through 3 and the inputs from

0 through 1. These are the addresses to be used by scenarios.

The purpose of the ETDID and ETDOD fields in an ET entry is to
describe the relationship between the fixed digital I/0 addresses
used by scenarios (the same for all emulated devices) and the hardware
addresses which are different for each emulated device. ETDID and
ETDOD as well as the four types of digital I/0 scenario instructions
allow up to eight digital inputs and eight digital outputs to be
associated with each emulated device. Since only one NOVA instruction
is used to read digital inputs or to set and reset digital outputs

and to conserve space in the ET, all the inputs (or outputs) for an

108

' CONNECTION POINTS PATH TYPES
device, A or B

NOVA hardwired

4 NOVA connector

cable

) IR back connector

one jumpered end
A Barrier Strip
IR jumper
B Barrier Strip

one jumpered end

IR front connector

cable

SUT SUT modem connector

IR = interface rack

Figure 17, Digital 1/0 Connections

109

Bock Connectors

To Device 71 {Inputs) To Device 66 (Outputs) To Device 67 (Outputs)
c3(o 3) co 3) c2(0 31)
(fi 303) o123 2q29303|
al A16
| |
2 2
3 DO P 3 e’
4 DO 1 4 P
5 DO 2 5
6 DO 3 6
{7 DI @ - 7
8 DI} = 8
9 9
10 10
B1 B16
.
4 RTS=CA
CTS=cC8
DSR=CC

CD =CF

DTR=CD

RI=CE

) ol=1=1—-1=T=-1-T-1=-1-1=
P-4 N] 1] it Pt Pt 3 B P P O e e o 0 8] B B B B (R Y

12 25) (e 25)

17=TY1 32=TY16

- — Front Connectors — S —-

IB-42,913

Figure 18 NORMAL INTERFACE RACK WIRING FOR ASYNCHRONOUS DEVICES

110

emulated device must have the same digital I/0 device address, be in

the same group (A or B), and be adjacent to one another.

ETDID and ETDOD have the same format (CCCBSSSSOODDDDDD in binary)
and specify the digital I/0 device address (DDDDDD), the number of the
left-most input or output (BSSSS, where the value of the high-order (B)
bit separates the A group from the B group), and the number of con-
secutive inputs or outputs minus one (CCC). If ETDID (or ETDOD) is
zero, there are no inputs (or outputs) associated with the emulated

device. From Figure 18 it can be seen that:

for device TYl:

ETDID: CCC = 1, BSSSS = 0O, DDDDDD = 71

ETDOD: CCC = 3, BSSSS = 0, DDDDDD = 66
for device TY2:

ETDID: CCC = 1, BSSSS = 2, DDDDDD = 71

ETDOD: CCC = 3, BSSSS = 4, DDDDDD = 66

for device TY16:

ETDID: CCC = 1, BSSSS = 30., DDDDDD = 71
ETDOD: CCC = 3, BSSSS = 28., DDDDDD = 67

where a decimal point following a number indicates a decimal number,

otherwise octal.

In Figure 18, the six digital input and output connections on an
A barrier strip are connected to six points on a B barrier strip which
in turn are connected to six pins on a front connector which is cabled
to the SUT. These correspondences are shown in Figure 19, The codes
are standard pin or signal codes. Figure 20 contains synonyms for the
five scenario instruction op-codes used for digital I/0 as well as
correspondences between the digital I/0 addresses used by a scenario
and the two-letter signal codes. These equivalences can be made by

use of the Macro Processor.

111

Scenario Pin

I/0 Address Number Code Function
DO-0 6 cC Data Set Ready (DSR)
Do-1 8 CF Carrier Detect (CD)
DO-2 22 CE Ring Indicator (RI)
DO-3 5 CB Clear to Send (CTS)
DI-0 4 CA Request to Send (RTS)
DI-1 20 CD Data Terminal Ready (DTR)

Figure 19, Normal Asynchronous Correspondence

DON = 3 DON CE

DOF = : L CDLOOP

BDN = 9 BDN CDON CD

BDF = q ADY 250

ADY = d J CDLOOP

cC =0 L CDON

CF =1 ADY 500

CE =2 DON CC

CB =3 DOF CE

ca =0 ADY 4500

Ch =1 DON CB CF
Figure 20. Macro Definitions Figure 21, HANDSHAKE Scenario

for Digital I/0

112

Figure 21 contains the HANDSHAKE scenario which causes the
emulator to exchange the modem control éignals necessary prior to
data transmission. The scenario first turns on (sets) the Ring
Indicator (CE). At the label CDLOOP, a branch is taken to the label
CDON if Data Terminal Ready (CD) is on. Otherwise, a 250-ms delay
is taken followed by a branch to CDLOOP to test CD again. When CD
has been turned on by the SUT (at CDON), a 500-ms delay is taken,
Data Set Ready (CC) is turned on, and Ring Indicator is turned back
off. A &)4+second delay is then taken and Clear to Send (CB) and

Carrier Detect (CF) are both turned on.

In Figure 18, connection points 1, 2, 9, and 10 are not used for
digital 1/0. Points 1 and 2 are received and transmitted data, and 9
and 10 are for clock signals for synchronous emulation. If more than
two digital inputs or four digital outputs are needed for an emulated
device or if secondary data transmission paths are needed, two A
barrier strips must be connected to the same B barrier strip. This
technique is necessary for synchronous emulation. From the stand-
point of digital 1/0, two adjacent A barrier strips will have to be
used so that the digital inputs and digital outputs for the emulated
device form consecutive sets. ETIDID can then be changed to describe
up to four inputs, and ETDOD can be changed to describe up to eight

outputs.

STORAGE REQUIREMENTS

The core storage requirements for both the Scenario Interpreter
and the Real-Time Exec are presented in Tables XII and XIII respec-
tively. The data for the Real-Time Exec are based on the 64-line
field test system, while the information for the Scenario Interpreter

applies to both lab and field test systems.

113

Table XII

Core Storage Requirements for Scenario Interpreter

Assembly Program, Major Tables, Total,
Module Words Words Words
SCINT 417 - 417
CMINT 668 - 668
ININT 996 64 1060
FETCH 464 64 528
TESTP 162 - 162
SUBR1 310 - 310
SUBR2 292 - 292
ALF 317 45 362
ERMSG 195 491 686
FTCHG 192% - 192%
DUMPW 171 - 171
DUMPH 185 - 185
ISCEN - 7 7

4369 671 5040

* For field test system

114

Table XIII

Core Storage Requirements for Real-Time Exec

Name Words
RTOS 2686
RTIN 672
MTA 758
LPT 98
SCMGT 442
PAGE 385
DSK 64
DMP 164
ASYNC 2916

TOTAL 8185

115

MISCELLANEOUS NOTES

(1) Assume devices A and B are both STARTed and then device B
is STOPped by a STOP command., Further assume that the scenario for
device A executes a type-7 scenario instruction to transfer control
to device B at time Tvand that the scenario for device B transfers
control back to A at time T'., An attempt to RESTART device A between
times T and T' is not legal since device A has no task associated
with it (its original task is associated with device B) even though
its status (STATI) is 'S'. Error message #33 is generated in this
case., Device B may not be RESTARTed during the interval since its
status is not 'S', although it may be RESTARTed after the STOP command

and prior to T, and after T'.

(2) The Scenario Directory is ordered the same as the DOS file
directory. (LIST/L *,IS) will produce a list on the printer of
internal scenarios and their order in the DOS file directory.) By
design, the Scenario Interpreter will find the first entry in the
Scenario Directory whose n-character name matches the first n-charac-
ters of a scenario name in a command. Thus, if TEST precedes TESTA
in the directory, a command specifying TESTA will find TEST in the
directory. Similarily, M can prevent access to Ml, MATCH, etc.
Implementation was done in this manner since there is no guarantee
as to which of many characters may follow the last character of a
scenario name. In particular, a user may declare any ASCII character

as an EOM character, which would follow a scenario name,

To avoid problems of selection of an unintended scenario because
of such subset names, various techniques are available. No subsetting
will occur if all scenario names contain the same number of characters.
In particular, if all scenario names are ten characters or more in
length, no problems will occur because the DOS file directory contains
only the first ten characters of a file name. Another solution is to

end each scenario name with a character which is used nowhere else in

116

a scenario name (the ASCII $ sign appears a likely candidate). If
subset names occur, they will cause no problems if the longer names
precede the shorter ones in the DOS file directory. The final solution,
of course, 1s not to form scenario names by appending one or more

characters to previous scenario names.

(3) Commands entered at the control TTY must be preceded by a
left bracket (control-K):

[START DS14 Y
Command instructions punched in cards should be in the form:
C¢START DS14 Y

The cents sign is the keypunch equivalent of the left bracket,
(In the case of the scenario instruction, the cents sign is not
needed for identification, but the first character in the literal is
skipped over.)

(4) Partial core dumps on the printer will result from:

a., use of the DUMP command

b. wuse of the Structure Dump (?) instruction

The dump routines used to implement these functions are not re-
entrant since interleaved usage by several tasks of the same printer
seems unuseful. The continuity of the dump 1s necessary to identify
the device (and scenario) causing it. The dump functions are for
diagnostic purposes and should be used with care to avoild reentrancy

violations.

PANIC CODES AND ACTIONS

If during the normal operation of the emulator, certain abnormal
conditions occur, the Real-Time Exec will abort the run, Before
aborting the run, however, the system saves the contents of accumula-

tors ACO-AC3 in locations 12, 13, 14, and 15, respectively, disables

117

interrupts, prints out a panic code on the control teletype, and

halts. The panic codes are described in Table XIV.

The user can obtain a full core dump of the system at this
point by depressing the ''CONTINUE" switch on the NOVA console. If
only a partial dump is desired, the word count and starting address
of the desired area can be entered into accumulators 0 and 1,
respectively, before depressing the "CONTINUE" switch. When the
dump is completed, the system will automatically try to write the
magnetic tape buffers to tape, write an end-of-file on the tape and
then try to make a normal emulator exit, printing out the run

statistics. An example of a panic message and termination is given

in Figure 22,

The run statistics that are printed on the control teletype at
the end of an emulator run are: the maximum number of task control
blocks that were in use at any one time (TCB MAX XXX), the maximum
number of tasks that existed on the task pending queue at any one
time, the number of available core blocks that exist at exit time,

and the total number of core words available at exit.

118

Error Code

1

10

11

Table XIV

RTOS Panic Codes

Meaning

System error. Two tasks are illegally trying to remove
core space from the free chain at the same time.

System error. Two tasks are illegally trying to
return core space to the free chain at the same time.

System error. A task issuing a .FREE supervisor call
has illegally given a block size of zero length.
Usually means the core chain or Scenario Interpreter
data structures are in error.

System error. A task issuing a .FREE supervisor call
has illegally tried to free a block with a starting
address the same as a block already in the free chain,
Usually means Scenario Interpreter data structures are
in error.

System error. A task issuing a .FREE supervisor call
has i1llegally tried to free a block which overlaps
the front part of a block already in the free chain,
Usually means core chain or Scenario Interpreter data
structures are in error.

System error. A task issuing a .FREE supervisor call
has illegally tried to free a block which overlaps
the end part of a block already in the free chain.
Usually means core chain or Scenario Interpreter data
structures are in error.

System error, A task exiting from either a .ALOC or
.FREE supervisor call has found the core chain busy
indicator illegally set.

System error. A task exiting from either a .ALOC or
.FREE supervisor call has found that the link word of
its TCB is illegally set. Usually means that the
queue stack is in error.

System error. A task issuing a .FORK supervisor call
has illegally given a value of zero for the new task's
stack address. Usually Scenario Interpreter error.

System error. A task issuing any supervisor call other

than .ALOC or .FREE has a zero value for its stack
address. Usually Scenario Interpreter error.

119

Error Code

12

13

14

15

17

18

19

20

21

25

Table XIV (Continued)

RTOS Panic Codes

Meaning

System error. The number of clock blocks reserved at
system generation have been used up by tasks 1issuing
.WAIT supervisor calls. User is either trying to
emulate too many lines with space for clock blocks

or 1s running in loopback mode at a high baud rate.

Hardware error. An undefined device has caused an
interrupt. Location 14 (accumulator 2) contains the
device number of the offending device.

System error. A response having an odd number of
characters has been terminated without padding out
the right byte of the last word. Usually indicates
response handling logic is in error when adding a
new device to system.

System error. The word count in a query buffer is
greater than 32,768, which 1is outside the address
space of the NOVA 800. Usually means the Scenario
Interpreter data structures are in error.

System error., The interrupt dismissal routine was
called with an 1llegal interrupt data block address.
Usually means an executive error.

System error. The interrupt data block address was
equal to zero for a device that was trying to perform
an end of operation at the non-interrupt level
because the queue for the device was not available

at time of interrupt.

System error. The initial word count for the text
portion of a query buffer is equal to zero. Usually
means scenarilo 1s in error or Scenario Interpreter data
structures are in error.

System error. Lab system only. On exiting from the
DCM handler the bit time indicator had been reset
illegally. This panic condition was part of original
Data General software.

System error, Lab system only. The system was unable
to service all DCM lines in 5 bit times. Usually means
core chain became too long. Part of original Data
General software,

Hardware error. The magnetic tape controller indicated
an error when a status instruction was executed upon a

120

Table XIV (Concluded)

RTOS Panic Codes

Error Code Meaning

tape interrupt.. Location 12 (accumulator @) contains
the status of the tape drive. The explanation of
the status is given in Reference 5.

26 System error. The magnetic tape handler received a
non-error interrupt and did not have a record of
having written a tape buffer. Usually means the
tape device unit control block has been destroyed.

27 Hardware error. In reading the magnetic tape status
before writing, either bit 1, 2, 3, or 5 has been
set indicating some type of tape unit trouble. From
experience panic code 25 usually occurs before this
condition.

28 System error. A task issuing a .FTCH supervisor call
has passed a scenario program counter which is larger
than the scenario itself. Usually means that the
internal scenario on disk has been destroyed or the
scenario management routine has an error.

29 Hardware error. The disk controller indicated an
error when a status instruction was executed upon a disk
interrupt. Location 12 (accumulator @) contains the
status of the disk controller. The explanation of
the disk status is given in Reference 5.

Note: The above panic conditions were inserted during the debugging and
development phase of the emulator software. From experience the
only ones that a user may usually encounter are 12, 13, 21, and
25, Any of the others occurring usually means a new problem
uncovered and should be reported to the system programmers.

20

eFe

WALT

ENTER RUN ID
1

READY

PANIC: ERRAOR C3DE=21
HIT CONTINUE FOR FULL CORE DUMF

TCE MAX 000003 TP® MAX 000003
CORE LINKS 000002 CORE AVAIL 027363
D3S REV 05S.

R

Figure 22, Example of Panic Message

122

SECTION VIII

DATA REDUCTION PROGRAM

INTRODUCTION

The Data Reduction program (DATAR) processes log tape data
gathered during an emulator test run. The program produces scenario
trace data and various statistics on the performance and utilization
of both the emulator and the SUT. A complete description of the
design and implementation of the program can be found in Volume 7 of
this series. DATAR runs under Data General Corporation's standard

Disk Operating System (DOS), Revision 5.

DATAR may be used to produce several kinds of summary and
detailed listings from the log tape, and thus it allows the user to
obtain a quick summary of activity during the run on an individual
basis or as an entire system. DATAR also gives detailed information
in the form of record-by-record listings that include information
such as readable real-time clock (RRTC) times, various timing

calculations, and the text message.

After the tape file is processed by DATAR, the user may save
the test data on master log tapes (to consolidate tapes or to put
similar runs on one tape). The master (or original) log tape may
be used for later analysis on the NOVA 800 or on a larger machine

with more sophisticated data reduction and analysis capabilities.

SYSTEM FLOW

Figure 23 depicts the system flow of DATAR programs. The log
tape, with data gathered from a single emulation run or a series of
runs, is mounted and readied on the system tape drive, transport @,
prior to any user input requests. The log tape provides the input
to DATAR.

123

WV¥90¥d NOILONG3H Viva 40 MOTd W3ILSAS TWY¥INI9 €2 ainbigy

41) 1NOLINMd S39VSS3IN
S3OVSSIN HOMM3 H0HH3
1NOLNI¥d
ALl
yviva 3dvli 901
(AMVHOJWAL)
4NgH
0H3Z39%d
\\I)
ASIa
3dAl331
WNOH4 SH313WvHvYd B e S
1NdNI -
n ..\1_ AS 1SITL

AS "¥viva

ge2'1v -V

124

DATAR is called by entering an input message on the system tele-
type. There are two forms of input messages which result in two modes
of operation, interactive (conversational) or switch. The interactive
mode requires the user to specify input arguments by responding to a
series of interactive requests output by DATAR. The switch mode,
where a switch is the character / (slash) followed immediately by an
alphabetic character, uses switches to modify input groups and specify

input arguments,

On entry, the Command Interpreter (CI) residing in DATAR.SV is
loaded from disk and uses the input arguments to determine the type
of output to be produced. The user may obtain a brief summary, a
detailed summary, an octal tape listing, or a listing with actual
RRTC times, with time differences (intervals), or with relative times.
The output device, (line printer or teletype) is also determined from
the input message. DATAR output is printed at the specified device,
and error messages are output to the teletype and, if in use, the

line printer,

DATAR requires the conversion tables (CTABS) and the error
message file (ERFILE) to be disk resident for all types of output,
If an octal listing is desired, the CI begins printout on the out-
put device. However, if a summary or another type of listing is
desired, the CI saves some information on disk in two temporary files,
PAGEZERO and HBUF, and calls one of the save files (SUMRY.SV, TLIST.SV,
or TREL.SV) into execution to do the processing. Error messages are
directed to the teletype and the output device. Note that a CONTROL-A
interrupt stops all programs and returns to DOS without deleting the
temporary disk files, PAGEZERO and HBUF.

OPERATING PROCEDURES

Input Message

DATAR is called by entry of a user input request starting with

125

the program name DATAR. The two valid messages are:

1. DATAR [Bout-device]J

2, DATAR/ <g> [/sub-options] [¥id] [¥RECORDS/types]

L
[Bout-device] J

where ¥ indicates a space.

Both messages result in the disk iperating system (DOS) loading the
save file DATAR.SV and passing control to the CI portion of DATAR.
The ordering of the input groups is important and should be adhered

to as illustrated above.

Command Interpreter

The CI operates in two modes, interactive (conversational) and
switch. The interactive mode is invoked by message type 1 above.
The switch mode requires a more complex input message (type-2) but
minimal user interaction. Also, the switch mode is easier to enter

and is processed by the CI in less time.

Interactive Mode

The interactive mode operates in the following manner. DATAR
types an interactive request that includes all valid responses as
shown in Table XV, The user must reply with either the full word
response or the corresponding integer. Based upon the user response,
DATAR either types another request or determines that the required
input parameters have been obtained and passes control to processing.
A user reply of COMBINATION (or 7) to request number 5 or of COMBINATION
(or 8) to request 7 causes the CI to type requests 6 or 8, respectively.
In either case, a 1l to 5 or 6 digit integer must be entered using the
specified digits from the preceding request. Also, a user reply of
LIST to request 9 causes the CI to type a list of the numbers and
names of all devices defined in the Equipment Table. Following the
list, the CI reissues request 9. The user may respond with numbers

or names, but repetitions are ignored. A list of requested devices

126

Table XV

Interactive Requests and Responses for DATAR

Request
Number Text

1 ENTER SUT RUN NAME.

2 ENTER OPTION: BRIEF(l), DETAILED(2), OR LIST(3).

3 ENTER YES(1),0R NO(@#) FOR PLOT,

4 ENTER SUB-OPTION: INTERVAL(l), SPECIFIC(2), ORDERED(3).

5 ENTER SUB-OPTION: INTERVAL(l), SPECIFIC(2), ORDERED(3),
ACTUAL (4) , OCTAL(5), RELATIVE(6), OR COMBINATION(7).

6 ENTER COMBINATION AS 1 TO 5 DIGIT INTEGER USING 2 TO 6
ABOVE,

7 ENTER RECORD KEY: ALL(1l), HISTORY(2), SCENARIO(3),
QUERY (4), RESPONSE(5), COMMAND(6), ERROR(7), OR
COMBINATION (8).

8 ENTER COMBINATION AS 1 TO 6 DIGIT INTEGER USING 2 TO 7
ABOVE,

9 ENTER DESIRED DEVICE NUMBERS OR NAMES SEPARATED BY
BLANKS OR LIST,

10 ENTER YES(1), OR NO(@), FOR START, STOP SPECIFICATION.
11 TO TERMINATE, ENTER END.

ENTER LOGICAL OR PHYSICAL RECORD START, STOP PRECEDED
BY L OR P.

127

is printed in the order defined by the Equipment Table. Figure 24
illustrates the various interactive paths to obtain the desired

output.

The output device to be used must be specified in the original
message. The optional input group, Out-device, has a value of $TTO
for the system teletype or SLPT for the system line printer (the
default output device).

Switch Mode

The message which invokes the switch mode is given in general
form by message type 2 above., One of the three switches (/B, /D, or /L)
must accompany the program name DATAR, otherwise the interactive mode
is entered. All switch letters were chosen to relate to the function

performed and to simplify mnemonic identification,
B
The input group DATAR/D[}uboption(sﬂ allows various combinations

of option and suboption swi%ches. One of the option switches B, D or
L is required; 1if more than one is given, precedence is given first
to B, then D. The option switches, listed in Table XVI, determine the
type of output to be generated: brief summary, detailed summary, or

listing.

The suboption switches are also listed in Table XVI. The sub-
option switches are meaningless for the B option. For option D, only
0, S, and P are meaningful,, For the L option, all are meaningful
except P. The suboption switches specify the type of data to be
included in the output option. They also determine if the data are to
be given sequentially or on an individual device basis. If the data
are to be given by device, the suboption switches tell DATAR whether

all or user specified devices are to be examined.

The optional input group id specifies the run identification.
It is the first n (1 < n < 20) characters of the run identification
given at the start of a real-time emulator run. If id is not given,

DATAR uses data from the first run on the tape.

128

4Viva 404 WvdoVId 3381 3AILOVYILNI

pe 34nbi 4

33IA30 A8 S3INIL TYNLOY S3AID € HO 2 40 3ISNOJS3IH Vv +
EX 319vL WOH3 N3IMVL JHV (HIGWNN ‘QgHOM ISNOdS3Y) SANOYHY JHL ux

129

KX 3718v1 WNO¥3 H3GWNN 1S3N03H S314103dS u ¥393INI 3JHL »
3dAl
gy093y
|z
1
S30IA3a S$321A30
Q3430480 914193dS
€°a3¥30Y80 2°013193dS
¢ J
. I9 S30IA30 $30IA30
e a3¥3040 914193dS
S1INIT 0 T
JWYN € owwmoxo 2 o_..___omn_m
@°ON ¥0 1°S3A
loi b
301A30 dnna IVAH3LINI ETXPUCAEL] vN1ov S3ISNOdS 3
A8 1S1T 3dv.l NIl JNIL JWIL 40 101d
NoLTOwaol 184 vao0| [ieavauziNi| |9¢3A1viEy| vt Ivniov 2‘ON ¥0 | ‘S3A
L |) 1) ¢
T le
Sa¥093y AYVANS ANV WWNS
1811 g311vi3g 43148
€¢1SIM 2‘a311vi3a wx | (4308
[I 1
2
NOILYII3I1LN3QI
JNYN NNY
i
H¥viva

pEL V-V

Table XVI'

Option and Suboption Switches for DATAR

Switch Function
Options

/B Brief Summary

/D Detailed Summary

/L Listing

Suboptions

/S Examine only user specified devices

/0 Examined all devices in order of E,T.

/P Histograms of Response Distributions

/N Name records for octal dump

/1 Print time intervals rather than actual times
/R Print Relative times rather than actual times
/T Octal format tape dump

130

The optional input group RECORDS/type(s) specifies the type(s)

of logical records to be included in the output. Valid switches are
given in Table XVII. Any combination of values is allowed. Omission
of this group implies all types. The B and D options ignore this

group.

The optional input group Out-device is defined above under in-

teractive mode.

The option and suboption switches may be combined as shown in
Table XVIII and Figure 25. Table XVIII presents all meaningful input
requests with a brief description of the output. (The optional input
groups are not listed.) Figure 25 also illustrates the meaningful

switch combinations.
Summaries

There are two types of summaries, brief and detailed. The brief
summary examines all records for all devices, listing error messages
and gathering general statistics. The detailed summary gives similar
statistics but does so by device. Note that the input group RECORDS

is meaningless since both summaries examine all types of records.

Brief Summary

The brief summary ignores suboption selections. The format of
the brief summary output is illustrated in Appendix IV, Figure 26.
The summary data in this figure is taken from the file with the run
identification of "RUN FT7"., A list of all error messages with

associated device names precedes the summary data.

Various RRTC times are given in the following units: elapsed
time is expressed in seconds to tle nearest 100,000 th, response
times in seconds to the nearest hundredth, total emulator CPU time
in tens of microseconds, and percent emulator CPU to the nearest

hundredth.

131

HViva HO4 WVHOVIQ 3341 HOLIMS G2 9.nbi4

dnoY¥9 TVNOILdO []
dnouo 38103y ()

$321A3Q $301A3Q 30I1A30
214193dS a3y¥3q¥0 A8 1ON 3SVD 17Nv330 «
| s/ 0/ [0N,
| |
SLINIT S3ISNOJS3Y
3INYN 40 107d
N/ d/
dWng AVA¥ILNI 3AI1LVI3Y IvN1oV
3dvl INIL aNIL 3WIL
o
| 1/ | I/ | W [N, !
|
SQy003y AMYWINS AYVWRWNS
1sn g3Tivi3a 43148
o] | a/ | a/
¥viva
oLt 3/ o/ 1/ 1/
ﬁ & n_.L T EVARY, momoou& q T@ a |osr N/ W a/ Nv1va
d/ H/ s/ d/ U/ a/

39vSS3IN LNdNI 3C0W-HOLIMS TVH3N3O

CCLIp -V

Table XVII

Record Type Switches

Logical Record Symbol Switch
HISTORY H /H
RESPONSE R /R
QUERY Q /Q
SCENARIO INSTRUCTION S /S
COMMAND & bie
ERROR E /E

Table XVIII

Switch Combinations and Valid Inputs

Input Message

Action Taken

1.

DATAR/B
DATAR/D [/P] or
DATAR/D/O [/P]
DATAR/D/S [/P]

DATAR/L/I

DATAR/L/1/0

DATAR/L/1/S

BRIEF summary of all data preceded by a list
of error messages.

DETAILED summary for each active device in the
order established by the Equipment Table. A
plot of response times is available as an
option (/P).

Same as above except only those devices
specified by the user (upon request) are
examined.

LIST all records in sequence written. Include
transmission time intervals, processing (task)
time intervals, and response times.

Same as above except list separately for each
active device.

Same as above except devices must be specified
by user.

133

Table XVIII (Concluded)

Switch Combinations and Valid Inputs

Input Message

Action Taken

7.

10.

1.

12,

13

14,

DATAR/L

DATAR/L/O
DATAR/L/S

DATAR/L/R/O

DATAR/L/R/S or
DATAR/L/R

DATAR/L/T [/N]

DATAR/L/T/0 [/N]

DATAR/L/T/S [/X]

LIST all records in sequence written. Include
internal scenario address and actual clock
times for start transmission and start/end
task.

Same as above except list separately for each
active device.

Same as above except devices must be specified
by user.

LIST separately for each active device all
records in sequence written. Include internal
scenario address and start/end transmission
times relative to LOGON and test start time.

Same as above except devices must be specified
by user,

LIST all records in sequence written in octal
tape dump format. Naming of starting and
stopping logical (or physical) record numbers
is available as an option (/N).

Same as above except list separately for each
active device.

Same as above except devices must be specified
by user.

134

The logical and physical record counts are given by the counts
following the headings MESSAGES and RECORDS, respectively. The
headings UN-R and UNSOLICITED specify unsolicited responses. The
TERMINAL-MAX heading is used to name the terminal associated with
the maximum response. The asterisk (*) following a scenario
instruction type denotes a lower case character or a non-printable

special character.

Detailed Summary

The detailed summary allows a device specification suboption as
well as a special histogram output. The format of the detailed
summary is illustrated in Appendix IV Figure 27. A list of all
requested devices to be examined is printed prior to summary data,
and consists of either all devices defined in the Equipment Table or

only those devices specified by the user.

The name of the file used in Figure 27 is "RUN FT7". A detailed
summary 1s given for each active, requested device, and the name of
the device is given as a terminal identification. Unsolicited
responses are counted as record types. Also, the average and maximum
RRTC response times are given in seconds, to the nearest hundredth.

As in the brief summary, an asterisk (*) is used to identify non-
printable lower case and special characters which are used as scenario

instruction types.

If requested, a histogram of response distribution is printed

for each active device following the summary data. Figure 28,
Appendix IV illustrates the format of the histogram., As can be

seen, the name of the device is given at the top of each page and is
followed, on the first page, by a list of all quarter-second response
intervals which have a positive count and percentage. The count
gives the actual number of responses which fall within the specified
interval. The percentage is calculated by dividing the count by the

total number of responses. All responses less than $#.25 seconds are

135

included in the first interval, while all responses greater than 15.0¢
seconds are shown in the 15.@¢ second interval. If there are no

intervals with a positive count, then a histogram is not generated,

Following the summary data (and histogram if requested) for the
last active device, the program lists all requested devices which

were found to be inactive during the run.

Listings

There are basically four types of listings: octal tape, actual
times, time intervals, and relative times. All these suboptions allow
record selection based on device and/or record type. If the user
decides to obtain the listing by device, then all devices defined in
the Equipment Table must be requested or the desired device names
and/or numbers must be specified in response to the interactive
request number 9. A list of all requested devices will precede any
data and a list of requested but inactive devices will terminate

the listing,

The types of logical records to be listed may be selected by
using the RECORDS input group. In the switch mode, all records are
listed if the RECORDS group is omitted. The heading MESSAGE on each
listing page refers to the logical record number of the first non-

history record on the page.

Octal Tape

The octal tape dump listing is used to print the contents of
each logical record in octal byte format. The user may name the
starting and stopping logical (or physical) record number by using
the /N option. If starting and stopping numbers are given, the
program skips all logical (or physical) records up to the start., It
produces its octal output in logical record format and stops at the
given logical (or physical) record number. Figure 29 in Appendix IV

illustrates an octal tape listing output format, The user requested

136

that all devices in the Equipment Table.be examined and named the
starting and stopping logical record numbers as 101 to 110,

As can be seen, the output for each active device gives the
range limits and device name prior to the data. After a range is
completed, the user may specify another range of limits or continue
to the next active device. Note that there may not be records within
the range associated with the given device (CT® in Figure 29). The

character P represents the physical record boundary.

Actual Times

The actual time listing contains the actual RRTC start of trans-
mission and the start and end of task processing times. The values
are taken directly from the record and listed in tens of microseconds.
The actual time listing is the default suboption in the switch mode.
Figure 30 in Appendix IV illustrates the format of the actual time
listing.

As shown by the example in Figure 30, the user requests an
actual time listing of Query and Response records ordered sequentially
and output on the system teletype. The name of the run is "6-14
4:30 PM." For each record, the type of record is given followed by
transmission start, task start, and task end times. The heading SCEN
ADDR gives the location of the start of the scenario instruction

relative to the beginning of the scenario, if any.

Time Intervals

The time interval listing contains differences between the RRTC
times. This listing also calculates response times as the difference
between the start of transmission for a solicited Response and the
end of transmission from the preceding query associated with the same
device. Figure 31 in Appendix IV presents the format of the time
interval listing.

137

The example in Figure 31 shows a time interval listing of "RUN2"
in which the user chooses to specify the devices to be examined. For
each active device, the terminal identification is given, followed by
all the data associated with the particular device. For each record,
the record type is given as well as the difference between the end
and start of transmission time, the difference between the end and
start of task processing time, and the cumulative emulator CPU time,
all in tens of microseconds. The response times are given in seconds

to the nearest hundredth.

Relative Times

The relative time listings are by device with user specification
of devices being the default case. Figure 32 in Appendix IV illustrates
the format of a relative time listing.

In the example shown in Figure 32, the user requests that all
devices defined in the Equipment Table be examined. Both the run-
start time and the user start time (UST) are given in tens of micro-
seconds. The run-start time 1s the start of transmission of the first
non-history record in the file. The UST is the start of transmission
of the first Query or solicited Response associated with the device.
A value of BELOW is given for UST if a Query or solicited Response
is not the first record type in the file for the particular device.
For each record, the record type is given in addition to the start
and end of transmission minus the UST, the start and end of trans-
mission minus the end of transmission time of the previous Query,
and the location of the scenario instruction (as SCEN ADDR) relative

to the beginning of the scenario, if any.

ERRORS

There are several error conditions recognized by the various

programs., Table XIX lists all error conditions and messages that may

138

Table XIX

DATAR Error Message File (ERFILE)

Number Message Cause or Corrective Action

1 Invalid option Submit valid option.

2 Invalid termination Submit valid option.
option

3 Invalid sub-option or | Submit valid option.
key (record)

4 Invalid device Submit valid device name or bad
specification device address logged.

5 Disk file accessing Error from DOS, disk file may be
error (read/write) missing.

6 End-of-file (on tape) End of run.

7 Invalid tape Log tape file incorrectly logged.
identification

8 Unrecognizable message | Bad record type logged.
type

9 Zero length record Two successive records with zero
found word length.

10 Illegal program call Overlay problem, maybe disk file is

missing.

11 Command instruction C-type record with null text.
missin

12 DISK SPACE exhausted Not enough disk for temporary files

or overlay.

13 Invalid device table Equipment Table not second record in
format file.

14 Tape read error Tape drive problems, may not be

mounted properly.

139

occur, during execution of DATAR,
The general format of the error message is:
RECORD m, WORD n: error message text

where m specifies the physical record that contains the erroneous
logical record and n specifies the first word of the logical record
relative to the start of the in-core buffer containing the record.

Many of the conditions allow the user to start over or submit another
choice. However, some (such as tape and disk errors) are unrecoverable.
The cause of error condition and/or corrective action for each error is

also given in Table XIX.

SAVING TEST DATA

After analyzing the test data with DATAR, the user may wish to
save the data for future analysis on the NOVA 800 or some larger
computer. A program (MASTR) has been written to transfer data from
a log tape to a master log tape (to consolidate tapes or to get
comparable runs on one tape). The master tape (or original tape)
may then be used as input to DATAR to analyze the run again or compare
a series of runs manually. In addition, more sophisticated statistical
methods may be employed to produce more meaningful statistics for

comparing and evaluating an SUT.

Program Description

In general, the MASTR program (written for a one tape drive sys-
tem) reads the data from the input log tape, temporarily stores it in
a file on disk, waits for the output (master) tape to be mounted,
writes the data from disk onto the tape as the last sequential file,
and terminates the file with two end-of-file (EOF) marks. If disk
storage 1s insufficient to complete the transfer in one pass, the
program continues through as many passes as necessary, each time

notifying the user that an additional pass is required., Obviously, a

140

multiple pass transfer requires input and output tapes to be mounted

and dismounted several times.

Input Message

MASTR requires two user supplied input parameters: a run
identification (used to locate the test run) and the amount of
available disk space (used as temporary storage). The two commands

that activate the tape transfer program are:

1. MASTR,
2. MASTR id ds

(Although message 1 appears more concise, note that requests to supply
values for the input groups id and ds will be issued by the program.)
The first input group, id, specifies the first n (1 < n < 20) charac-
ters of the run identification as found in the Identification-History
record, the first logical record logged. The run identification,
which was entered at the start of emulation, is required to allow

access to different runs on multiple run tapes.

The second group, ds, is the number of unused disk blocks avail-
able for temporary storage. The program uses ds-2 blocks to protect
the used portions of disk. The number of unused blocks is given by
the DOS command DISK. This number can be increased by deleting disk
files no longer in use. A good approximation for the number of blocks
required for a single pass transfer is the number of physical records
used for the run (obtained from the record count in a brief (/B) sum-
mary) plus five (two for the unused blocks and three for disk file
linkage words). This number must be multiplied by the ratio of
physical record size to disk block size, which presently is 1.

OEeration

The MASTR program is called by one of the input messages described
above. It obtains the run identification and disk size from the input

message (#2), or as responses to the program commands ENTER RUN

141

IDENTIFICATION and ENTER AMOUNT DISK LEFT, The program then issues

the command:
MOUNT INPUT TAPE, STRIKE CARRIAGE RETURN

and waits for a carriage return. Upon receipt of the carriage return,
MASTR locates the first file (on the input tape) that contains the
specified run identification as the first n characters in the History-

Identification record.

The program uses the disk size and physical record size to cal-
culate the number of tape records that can be written in the temporary
disk file, MITCHTEMP. MASTR reads the tape until disk space is
exhausted or an EOF mark is encountered. If disk space is insuffi-

cient the message:

NOT ENOUGH DISK.
REMOUNT INPUT TAPE AFTER OUTPUT TAPE IS WRITTEN.

notifies the user that one or more additional passes are necessary
to complete the transfer. This implies remounting the input tape

after the first segment is transferred to the master tape.
After the disk file is written, MASTR issues the command:
MOUNT OUTPUT TAPE, STRIKE CARRIAGE RETURN

and waits for the carriage return. Upon receipt, the program locates
the double EOF mark on the master and writes all the data from the
disk file onto the output tape, overwriting the second EOF of the
preceding run. If an additional pass is necessary, the program
requests that the input tape be mounted and continues the loop until

the transfer is completed. Upon completion, the message:
LOG TAPE TRANSFER COMPLETE

is output and two EOF marks are written. The first EOF terminates the

file while the second indicates that the file is the last one on the

142

tape. Note that a tape intended to be a master must be initialized
by the DOS command INIT/F MT@ prior to the transfer operation. The

command writes two EOF marks at the beginning of the tape.

The program does not check the run identification of each file
on the output file. Therefore, files may be written with duplicate
file names. However, only the first file with a duplicate file name

is accessible.
Errors

The MASTR program checks for various error conditions. If an
error exists, a message is output and the transfer terminates by
returning to DOS. Table XX lists the error conditions, messages, and
suggested corrective action. Remember that files on a master tape are
only as unique as the run identification given at the start of the

emulation test.

143

Table XX

MASTR Error Message File

ERROR MESSAGE

ERROR CONDITION

CORRECTIVE ACTION

1.

NOT ENOUGH DISK

ERROR LOCATING
INPUT FILE

DISK ERROR

INPUT TAPE READ

ERROR

OUTPUT TAPE WRITE
ERROR

EOF WRITE ERROR

ERROR LOCATING
OUTPUT FILE

Space too small for
one physical tape
record.

Invalid run id, illeg-
al format, tape read
error.

Trouble writing/read-
ing file MITCHTEMP.

Tape equipment or
parity problem,

Tape equipment or
parity problem.

Tape equipment or
parity problem.

No second EOF, tape
equipment or parity
problem.

Delete some files
and specify larger
number,

Check id, format,
read errors by using
DATAR/B with and
without run id.

Ensure disk accessi-
bility. Try again.

Check channel number
unit ready, etc.
Otherwise, fatal
parity error.

No double EOF or
check channel number
unit ready, write
lockout, etc. Othert
wise, fatal parity
error.,

No double EOF or
check channel number
unit ready, write
lockout, etc., Othert
wise, fatal parity
error.

Check equipment,
initialize tape if
never done before.

144

SECTION IX

EXECUTION TIMES

REAL-TIME INSTRUCTIONS

Because of the variety of scenario instructions available to the
user, it may be possible in some instances to accomplish the same
task using more than one method, or combination of scenario instructions.
In these cases, execution timing for scenario instructions may be a

consideration in determining maximum scenario efficiency.

Table XXI gives the current best estimates of real-time emulator
execution times. The times given represent the total cost (Scenario
Interpreter as well as Real-Time Exec execution time) in microseconds
of emulator CPU time for executing each function once. The functions
timed include two miscellaneous functions (logging and the receipt of
an unsolicited response) followed by the scenario instruction types
given in the same order as Table XVI of Volume 2 of this series followed

by the command types in alphabetical order.

The data were obtained by making a very large number of short runs
on the field-test emulator. In most cases, a run consisted of execut-
ing a single scenario for a single device. After performing its task,
the scenario executed a QUIT command. The data reduction brief summary

operation was used to obtain the CPU time.

The general technique used was to execute the desired function
1000 times in a loop, as in the case below of one of the scenarios used

to test the add instruction:

1 3 A 12

2 3 c [LoG ALL OFF ALL
3 22 1 1000 R9

4 28 L LOOP

145

Table XXI
Execution Times
Real-Time Scenario Instruction
(in microseconds)

Execution
Function Time Footnotes
Miscellaneous Functions

Logging 1778 + 6.6b

Receipt of

Unsolicited 2325 + 231r 10, 26

Response

Control Instructions
R 4397 + 477i 10, 26, 27
R"' 3312 + 220r 10, 26, 27
Q 1721 + 255q 10, 26, 27
I 3845 + 440i 10, 26, 27
@) 953 + 213q 26, 27
3 679 27
679 13, 27

C - 10, 14, 27
E 3137 + 54e 10, 15, 27
E 1333 10, 16, 27
D 1305 1, 3
W 1458 getan. 13
d 1236 153
e 1136 551, 124
X 7490 7, 27
7 761 3
8 2703 1, 17, 27

146

Table XXI (Continued)

Real-Time Scenario Instruction Execution Times

Execution
Function Time Footnotes
Arithmetic and Logical Instructions
+ 691 il 267
- 691 1 E3i; 2T
* 768 1, 27
/ 788 1,6, 21
708 3
Assembler Directive Instructions
L — 18
a - 18
blank — 18
t - 18
i - 18
Branch and Comparison Instructions
J 631 3
B 689 1, 2, 3, 13
U 689 L, 2, 3, 13
> 689 1, 2, 3, 13
< 689 1, 2, 3
G 689 1, 2, 3
H 689 1y, 25 3
M 657 + 39m 3j, 119
S 677 + 39m + 48n 1, 9, 27
Y 719 % 3

147

Table XXI (Continued)

Real-Time Scenario Instruction Execution Times

Execution
Function Time Footnotes

Branch and Comparison Instructions (continued)
n 719 2 B 13
9 721 2, 3
q 722 2, 3, 13
K 682 3, 20
3 682 3, 4, 20
P 1016 + 43.5p 3

Core Memory Allocation Instructions
1361 3, 10
7858 10, 21, 27
Move Instructions

1 668 3
g 687 27
p 687 i 97
5 621 + 43.6t 27
T 640 27
= 717 24T
zZ 715 135 27
A"/ 663 + 21.6¢ 13, 27
6 647 + 21.6¢ 27
\ 708 27
@ 748 27
r 680 27
c 666 4, 27
h 684 27

148

Table XXI (Continued)
Real-Time Scenario Instruction Execution Times

Execution
Function Time Footnotes
Diagnostic Instruction
? -
Commands

DUMP -
ERROR 3950
LOG 5355 12, 22
MONITOR 7204 12
QUIT 2060 23
RESTART 12,571 12, 24
SCALE 5046 25
START 14,540 8, 10, 11, 12
STATUS 4681 12
STOP 12,571 12, 24
SuB 7490 7, 10, 11
SUB 7858 10, 11, 21

149

Table XXI (Continued)
Real-Time Scenario Instruction Execution Times

Nomenclature

b = length of MESBF (variable or text) portion of buffer to be logged,
in bytes

c = number of bytes for which longitudinal redundancy check (LRC)
byte is calculated

e = length of error message in type-E scenario instruction, in bytes
i = length of query and length of response, in bytes

m = number of bytes successfully matched

n = number of bytes unsuccessfully matched

p = number of bytes parity checked

q = length of query transmitted, in bytes (those up to, but not
including, the first NULL (zero) byte in a query buffer)

r = length of response received, in bytes

t = number of bytes transferred from (contained in) a type-5
scenario instruction to a query buffer

150

Footnotes

(1)

(2)
(3)
(4)

(5)

(6)

(7)

(8)

®)

Table XXI (Continued)
Real-Time Scenario Instruction Execution Times

Add 6.4 microseconds for each field of type 10 or 11 which
contains a Register number.

Add 6.4 microseconds if the branch is not taken.
Add 14 microseconds if instruction starts at an even byte.

Add 26. 8 microseconds if initial value of RGRPT points to an
odd byte.

The time includes the time for the type-e instruction plus the
additional time for the following (executed) instruction over
what it would be if executed normally rather than by the ex-
ecute instruction. The normal execution time of the following
instruction is excluded. Increased time over most other in-
structions is spent in scenario management code in the Exec.
The type-e instruction causes two changes in the scenario
associated with the device. The time given includes the time
to free each core page when control passes to the other but no
time to read pages from disk since the core pages were not
overlaid. If one or both core pages were in use by other de-
vices, the freeing time would be less, but if all core pages
were in use, the type-e instruction could require disk reads
to be done.

Execution time varies by 11. 4 microseconds from minimum
to maximum, depending upon values used.

Includes time to execute the SUB command with scenario speci-
fied and the type-X scenario instruction. Includes time to
allocate set of Registers but not the time to free them.

Includes the time to start the scenario for the named device
and to terminate that scenario by execution of end-of-scenario.

Add 13 microseconds if branch not taken. If substrings of the
instruction string occur in the response, the number of com-
parisons may be relatively large. For instance, if the response
ABCABACABABCABABACABABABC is searched for the string
ABABABA, then m =27 and n = 19 and the execution time is
2642 microseconds. .

151

Footnotes

(10)

(11)

(12)

(13)

(14)

(15)

(16)
(17)

(18)

(19)

(20)
(21)

Table XXI (Continued)
Real-Time Scenario Instruction Execution Times

Execution time will vary depending upon the number of blocks
in the free chain which have to be examined to find a large

- enough block to allocate and/or to find the proper place in the

chain to place a freed block.

Execution time will vary depending upon the number of
Scenario Directory entries which have to be examined before
the named one is found.

Execution time will vary depending upon the number of Equip-
ment Table entries which have to be examined before the
named one is found, and this number may be different depend-
ing upon whether hierarchical equipment names are used in
the command or not.

Time estimated based on measured time for a similar
instruction.

Time varies widely with command type. The time to execute
the type-C instruction is included in the command execution
time, except for the QUIT command.

Time with error-message logging enabled. Time includes
logging time.

Time with error-message logging disabled.

Includes time to log the response. If response logging is dis-
abled, the instruction is equivalent to a NOP.

Assembler directives are not executed in real-time and are
not even included in the internal scenario.

Add 24 microseconds if the branch is taken. If an m-character
compare is made, the first four characters match, but the fifth
one does not, the execution time should be 657 + 4 (39) + 24 = 837
microseconds.

Add 10 microseconds if branch not taken.

Includes time to execute the SUB command with scenario
specified and the type-F scenario instruction.

152

Table XXI (Concluded)
Real-Time Scenario Instruction Execution Times

Footnotes

(22) Time for LOG ALL OFF ALL

(23) Time through the time the record is logged. Certain termina-
tion activities are performed after logging.

(24) Includes time to execute RESTART of a named device and time
to execute STOP THIS for the named device.

(25) Time will vary depending upon number of digits in scale factor
to be converted. Conversion time is 31 microseconds per
decimal digit.

(26) Using an asynchronous line adapter at 10 characters per second.

27 Add 12. 8 microseconds if instruction starts at an odd byte.

153

5 28 + R9 34 RI1

6 34 + R8 1 R8

7 40 U LOOP RY R8

8 47 c [Loc ALL ON C
9 63 ¢ [quit

Instruction 5 is the one being timed. Instructions 6 and 7 are for
loop control and instruction 3 controls the iteration count.
Instructions 2 and 8 turn logging off and then back on to capture
the final CPU time value. Such scenarios were run two or more times

each to check the degree of reproducibility.

A second, base scenario was then prepared, identical to the
above except that instruction 5 was eliminated. The second scenario
was then run two or more times, and the most representative CPU time
value was chosen for each of the two scenarios. The difference bet-
ween these values divided by the iteration count gives the function

execution time.

The contents of the two scenarios were varied depending upon the
function being timed. In the case of several of the commands, more
than one scenario had to be run concurrently. The iteration count
was reduced to 100 for the miscellaneous functions, for some of the
commands, and for the query instructions. In any case, an appropriate
base scenario was always constructed and run so that the difference in
CPU times would isolate the function or functions being timed (a few
of the functions cannot be executed multiple times independently of

other functions).

The measured results were given general reasonableness checks
and were also evaluated by comparing differences between measured
results for different functions (primarily the scenario instructions)
and differences obtained from NOVA instruction counts for the same

functions. No attempt was made to verify the absolute values given

154

in Table XXI because of the complexity of the emulator system. The
relative comparisons checked reasonably well, although certain
differences have not yet been explained. The data in Table XXI cannot
be regarded as precise., The presence of a zero in the units position
cannot be regarded as indicating low precision nor can the presence of
a decimal place be regarded as indicating high precision in all cases.
In the latter case, the increments given in the table proper for those
functions whose execution times vary with string length, the increments
given were obtained by computations on the measured results, although
these increments checked rather well in those cases in which instruction
counts were made, The increments given in the footnotes are generally
more precise since most of them are based on instruction counts

(assuming that the CPU clock is accurate).

The relative comparisons made for approximately 15 scenario
instruction types indicate precision varying from 0 to 35 microseconds.
No formal comparisons were made for the commands although it appears
possible that much larger discrepancies may be present. In particular,
from scanning the code for the LOG command and the MONITOR command, it
does not seem reasonable that the latter should require nearly 2 milli-
seconds more than the former. It should also be noted that a typical
command generally provides many more options than a typical instruction
and, therefore, will result in a much greater range of execution times.
It was not possible to time and report each option of each function.

In addition, as the footnotes show, a number of run-dependent factors

can significantly affect the timing results.

Several factors are present which would make it very costly to
attempt to resolve the discrepancies noted above. At least 700 runs
were made to obtain the current data. Most of these lasted several
seconds in real-time, but some lasted a minute or two. The results
had to be listed, recorded, and analyzed. Most of the scenarios were

run two or more times each since the results frequently showed some

155

variation in total emulator CPU time. It was felt that replicated
runs should agree within possibly 10 to 30 microseconds based on early
experience with the simpler instructions. In the case of some of the
commands and query instructions, the total variation was sometimes

200 or 300 microseconds. In the case of a common base scenario run a
number of times over a two-month period, the total variation was 3200
microseconds (for a 1% second run - 0.2%). It seems likely that these
variations are the result of clock frequency variations, possibly the
result of temperature differences. The clocks involved were the CPU
clock, the Readable Real-Time Clock used for timing measurements, the
""Real-Time Clock" used for response timeouts and which places a con-
tinuous overhead on the DVM, and the line-~adapter clocks in the case
of query instructions. In addition, it is known that the timing
characteristics of the magnetic tape drive have a rather coarse control,
and the tape drive had to be used in all runs to record at least the

first and last event of the run,

A cause of greater variation in execution times is the fact that
the NOVA computer has only very superficial byte-manipulation ability.
The Exec uses 12.8 microseconds more to fetch the two-byte scenario
instruction length field (for any instruction) from two adjacent words
(when the instruction starts at an odd byte) than when it starts at an
even byte. The Scenario Interpreter uses 26.8 microseconds more to
fetch a two-byte operand (contained in certain instructions) when the
instruction starts at an even byte than when it starts at an odd byte.
The effect of these differences is that to achieve the best results
one needs to examine the starting byte of each instruction in a scenario
(or at least those within the loop) and make adjustments in case of
differences between a base scenario and a timing scenario. One may
also need to modify both scenarios by adding one or more instructions
or changing their positions to cause cancellation of the even-odd
effects. The nature and magnitude of this problem were only realized

after a number of runs were made, instruction counts were made for

156

portions of certain instructions, and relative comparisons were made.
Making such even-odd corrections for a large number of scenarios would

be quite time consuming.

In the case of the START and SUB commands, the present implementa-
tion reads at least the first two bytes of the Scenario name from the
command for each Scenario Directory (SD) entry encountered. If 30
entries have to be compared and the scenario name starts at an odd
byte in the command, the execution time for the command is 800 micro-
seconds more than if the scenario name started at an even byte. (To
force the even byte case, an odd number of blanks must occur after
""'START" and before the scenario name if the device name contains one
digit.) To control this situation, the length and content of the SD
as well as the location of the scenario name within a command must be

controlled.

In the case of commands which contain device names, a further
variation can arise. A total of 26.8 to 80.4 microseconds more will
be used if the device name or "THIS" starts at an odd byte in a
command. A total of 31 microseconds is used to convert each digit
(after the two initial characters) in a device name, The execution
time will further vary depending upon the number of Equipment Table
(ET) entries which have to be searched. The number of entries
searched will depend upon the ordering and linking of the ET entries

and whether or not hierarchical equipment names are used in commands.

If the above factors are handled properly, one may be able to
obtain relatively accurate results for the tests run. Certain
additional factors need to be considered before applying the results.
Of necessity, the tests were run under conditions whereby there was
little competition for resources within the emulator. As the number
of active, emulated devices increases, allocable core memory becomes
splintered and those functions which must allocate and/or free core

memory will use up more emulator CPU time. When a block is to be

157

freed, each link in the free chain which must be examined, uses up 7
microseconds of CPU time, and approximately the same amount of time is
needed during allocation. If an average of 25 links needs to be examined,
the cost is 175 microseconds for each allocate or free operation. Every
command executed requires the allocation of a command buffer, freeing

of the command buffer, and allocation of an error-message buffer for

the response to the command and may also require the freeing of a
previous error-message or query buffer. In addition, 6 or 7 instructions
(see footnote 10) and one of the miscellaneous functions allocate and/or
free core memory. There is no dynamic measure of the length of the free
chain, but the timing tests probably only caused a free chain of five

or ten links. Very little logging was done (from 2 to 6 records per
run), but each record logged requires one allocation and one free

operation (for a Register Stack).

Scenario management can also have a significant effect on individual
execution times. If an instruction spans a scenario page boundary, it
must be buffered and a new scenario page becomes the active page for
the device. The cost of the latter operation is in the vicinity of
200 microseconds., If the new page must be read from disk, the cost is
greater., When the number of active scenario pages in core approaches
the number of core pages allocated, a disk read may be required for
each scenario instruction fetched from a new page. The emulator is
designed to cope with this situation to handle peak loading problems.
If an emulator module operates in this mode more than a relatively
small fraction of the time, it is overloaded and its load should be

reduced.

The data given in Table XXI ignores the effect of any error
conditions. The only error messages allowed for are the normal

responses to commands.

The "Real-Time Clock'", used for response timeouts, provides a

continuous overhead estimated at between 0.27% (2000 microseconds per

158

second of elapsed time) and 0.3%. The effect of this overhead has been
ignored in Table XXI in those cases in whiech emulator %CPU time was
near 100% since the effect on a 700-microsecond instruction is only 1
or 2 microseconds. In those cases in which the 7% CPU time was lower
(primarily some of the commands, the query instructions, the delay and
wait instructions, and the miscellaneous functions), the emulator CPU
times for the base scenario and the timing scenario were corrected for
this overhead based on elapsed time, generally using a conservative
0.2% factor. This overhead is present throughout the elapsed time of

a run, regardless of the amount of emulator activity.

NON-REAL TIME PROGRAMS

It is difficult to give anything but intelligent estimates as to
the running times of the non-real-time programs. This is because of
the many variables involved which determine execution times for each
of the programs. Presented here is a sample problem for each program,
with key characteristics defined, and approximate running times given.
The times are based on an average derived from several runs of each

program, and may vary within a 5 second range.

SSUB

The example shown in Appendix VI, Figure 33 shows a scenario called
34FORTN with macro calls not yet expanded. Figure 34 in Appendix VI
shows the same scenario, now called FORTN, with macros expanded. The
libraries which contain the macro definitions are given in Figure 35.
The table below summarizes the key characteristics pertinent to the
macro processing of this example. In this case, the macro processor

takes about 20 seconds to complete execution.

number of libraries 2

number of macros in libraries 16
length of file without macros
expanded 1172

159

length of file with macros
expanded 3956

number of macro substitutions 185

MACDEF

The program used to generate macro libraries is MACDEF. The
execution timg of this program depends on characteristics summarized
in the table below for the example shown in Appendix VI, Figure 35,
the KAPLIB library.

number of definitions 3
length of input file 205
length of output file (.ML) 203

Execution time to create KAPLIB.ML from KAPLIB is 4 seconds.
CVT

The scenario assembler program may convert the FORTN scenario
(Figure 34) into an internal scenario by using any of its three print-
ing options. Average times for execution are 35 seconds for assembly
with no listings (CVT/N option), 55 seconds for assembly with partial
listings (CVI/P option), and 3 minutes 10 seconds for assembly with
complete listings (CVT option). These times, of course, reflect to
some degree, the speed of the printer. The table below summarizes the

key characteristics pertinent to the Assembly of the example.

label definitions 22
.other label references 24
queries 25
arithmetic instructions 133
search instructions 22
commands 3

assembler directives
other instructions 159
Total instructions 391

length, in bytes, of internal scenario 2435

160

DATAR

The data reduction program processes the log tape written during
an emulation run and can produce many combinations of listings and
summaries. Execution times for all combinations are too cumbersome
to be presented here. The table below describes the key characteris-
tics pertinent to the data reduction of a log tape from a sample

emulation of the Fortran Cost scenarios presented in Figures 33-35.

number of physical records 43
number of logical records 376
number of internal scenarios in
directory 70
number of devices in ET 26
number of active devices 2,
number of queries 1:2:3
number of responses 226
number of scenario instructions 1

number of lines of output for
relative-time listing 660

Using such a log tape, the data reduction program produces a brief
summary in 20 seconds and a relative-time listing for a single
emulated device in an average of 4 minutes. These times are for
processing of a file which is the first file on a log tape. If more
than one emulation file is on a tape (perhaps a tape created by the
MASTR program) the DATAR program rewinds to the beginning of tape and
re-searches for the correct run every time it begins a new device
listing for the run. This, of course, may consume considerably more

time.

MASTR

The execution time of the MASTR program depends on several

factors, as described in the table below:

161

number of physical records in run

disk space available

file number of MASTR tape

Also included in the complete execution time is the length of time it
takes the user to dismount the original log tape and mount the MASTR
tape, for as many times as is needed to complete the transfer. There-
fore it is unrealistic to give any meaningful timing estimates.

162

Data General Corporation,
093-000048-03, Southboro,

Data General Corporation,
Southboro, Massachusetts,

Data General Corporation,
Southboro, Massachusetts,

Data General Corporation,
Southboro, Massachusetts,

Data General Corporation,
Southboro, Massachusetts,

REFERENCES

Disk Operating System User's Manual,
Massachusetts, 1971.

NOVA Editing Routines, 093-000018-02,
1971.

File Check Program, 093-000071-00,
1971.

Tape Dump Program, 093-000059-01,
1971.

How to Use the NOVA Computers,
1971.

163

APPENDIX I

Conversion Codes for IBM 2741

Because some of the 2741 control characters do not have a
direct counterpart in the ASCII character set, an exact mapping was
not possible. Table XXII is a list of the 2741 control characters,
and their position in the ASCII table. This same mapping was used
in the 2741 conversion code tables used for the on-site model of the

emulator.

Table XXIII represents the conversion codes used by the Scenario
Assembler for 2741 EBCDIC odd parity code, with the parity bit as
the right-most bit. The "lab" conversion is used on the fixed-site
model of the Emulator when emulating an IBM 2741 terminal using
Data General's software driven data communications multiplexor. The
"field" conversion reverses the order of the bits, and is used on
the on-site model of the Emulator when emulating an IBM 2741 terminal

using Digital Computer Controls asynchronous line adapters.

164

Table XXII

Control Characters for IBM 2741 Terminal

2741 ASCIT

Octal Character Octal Character
@37 EOT = control D [10 EOT = end-of-transmission
135 BS = backspace a1¢ BS = backspace
172 HT = horizontal tab @11 HT = horizontal tab
@73 LF = line feed @12 LF = line feed
13¢ RES = restore @14 FF = form feed
133 NL = new line @15 CR = carriage return
@34 UC = upper case @16 SO0 = shift out
174 LC = lower case @17 SI = shift in
@331 PN = punch on @22 DC2 = device control 2
@32 RS = reader stop @823 DC3 = device control 3
171 PF = punch off @24 DC4 = device control 4
136 IL = idle @26 SYN = synchronous idle
@75 EOB = end-of-block @27 ETB = end-of-block
@76 PRE = prefix @33 ESC = escape

165

ASCII

ASCIT

CUARACTER ~ _CODE

NUL
Son
STX
ETX
EOT
ENQ
ACK
BEL
RS
HT
LF
VT
FF
CR
SO
ST
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
Vs

(ol =Ne]

L]

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

control
upper case
lower case

2741*
LAB

CODE

037

C 135
C 172

(o]

O a8 o o

073

130
133
034
174

C 031
C 032
Cc 171

C 136
C 075

076

Table XXIII
Conversion Code Table used for IBM 2741 Terminal

2741
FIELD

CODE

174

135
057
156

015
155
034
037

114
054
117

075
136

076

166

ASCII

ASCIIT
CHARACTER ~CODE

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100

2741
LAB
CODE

u
U
U

001
127
026

. 026
. 127

013
141
015
023
025
020
141

L 067
L 100

—
T

[l =T =T = = B = B — I o B o B S S i o o B s o B o B

166
043
025
002
004
007
010
013
015
016
020
023
010
007
004
002
016
043
040

2741
FIELD

CODE

100
165
064
064
165
150
103
130
144
124
004
103
166
001
067
142
124
040
020
160
010
150
130
070
004
144
010
160
020
040
070
142
002

Conversion Code Table used for IBM 2741 Terminal (Concluded)

Table XXIII

2741 2741

ASCI1 ASCII 1AB FI1ELD
CHARACTER CODE CODE CODE
A 101 U 142 043
B 102 U 144 023
103 u 147 163
104 U 150 013
105 U 153 153
F 106 U 155 133
G 107 U 156 073
H 110 U 160 007
1 m U 163 147
J 112 1 103 141
K 113 U 105 121
L 114 U 106 061
M 115 U 111 111
N 116 U 112 051
0 117 U 114 031
P 120 U 147 171
Q 121 U 121 105
R 122 U 122 045
S 123 U 045 122
T 124 U 046 062
U 125 U 051 112
\' 126 U 052 052
W 127 U 054 032
X 130 U 057 172
Y 131 U 061 106
Z 132 U 062 046
[133 U 040 002
\ 134 U 166 067

] 135
' 136 U 067 166
. 137 U 100 001
S 140

167

ASCII
CHARACTER

o)

a 0

e O = - - B S

H o o o 2 3

rr w

(=4

L vt — ™M N <€ X <&

=]
™
(&

ASCTT
CoDr

141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

2741
AR
Conr.

-~

-

L
1
L

—_—

e o

054

057
061
062

177

2741
FTELD
CODE

0473
023
163
013
153
133
073
007
147
141
121
061
111
051
031
171
105
045
1272
062
112
052
032
172
106
046

177

APPENDIX II

Sample Listings from Scenario Assembler

168

o 0o pa pa pa B bt B B P
CENOOUOLUN QOBNOWUYLUA »

O
[Z 3 S A

[BN
(4.0

O U

16

33
36
47
52
58
66
79

73
76
82

92

a5
1914
193
108
111
1:8

OMVDIMDODODVIrDOVUVIVITOORNE>P>PNDIrONIIr»

CONVERSION CN0E s 1}
ENV=0F=MESSAGE CODE »

9
FLI
[
FLY CANDE
MITRE/EMULATE
FL4
[
FL4 LOGGED
-]

13 @ Rs8
FILES
R8

FLS
te
FLS #
REMUOVE
FL7
"
FL7 #
BYE
FLg
tt

FL3 ET
fQuiIT

169

1

T1ESTIS

10

d
5
§

6
8
10
i2
14

0
122

“INDICATOR ¢
CONVERSION CODE = 1
END=OF=MESSAGE CODE, =

-

ALLOCATE 9

"
@

FL3 CANOE

2
128
)
191
fv4d

12
7
143
iio
1493

U MITRE/EMULATE

16
18
29
22
24
26
28
32
32

N
3S

)

36
38
40
42
a4
40

47
49
51

!
'
!
!
!
!
!
!
!

%}
121
i1
122

57
113

. 114

124
1o

e
122

21
115
1¢4
143
195
125
19d
145

5

3
0

FlL.4 LOGGED

e
123
41
117
107
194

1
e
114
197
105
d

SRV

R8

170

AN
DE

aM
17
RE
/t
MU
LA
TE

1

i1

12

13

14

i6

17

18

19

20

21

62 ! [6
54 ' 53 15
86 ! 8 19

S FILES
58 ! v 10
60 ' 65 106
62 ' 11§ 114
64 ' 1085 123
0 RS
66 ! 2 4
68 ' 134 10
0
70 ! 2 3
72 ' 117 2
L FLS
R N
73 ¢ " M
75 ' 122 v
S FL3 #
76 ! 2 6
78 1 123]
60 ' 111 43
0 REMOVE
82 ! 2 12
64 ! 121 122
86 ' 185 1135
88 ' 117 1235
90 ' 193 15
L FL?
R
o2 ! 0 3
94 1 122]
S FL7 &
95 ! [} 6
97 v 123 (
99 ' 134 43
¢ BYE

10§ ¢ '] 7
103 ' 121 102
1eb°1 141 1ul

171

SF
IL
ES

In

ar

ov

o

a8
YE

187 v 15
22 L FL®
2y R 1!
108 ! 0
110 ' 122
24 S FL8 ET
111! 4
113 ' 123
115 ' 154
117 ' 124
25 C (GUIT
118 ! Q
120 ' 103
122 ' 121
124 ' 111

172,

SYMBOL TABLE

NUMBER OF ENTRIES S
13 ES
LENGTH LABEL AODRESS LINE NO.
22 X X222 AR AR NS AAS RN RS RR RSN AR AR R RN N R 2)
3 FLY 3 2
3 F 4 33 6
3 FLS 73 14
3 FL7 92 18
3 FL8 108 22

173

APPENDIX III

Listing of EQUIP.RB

174

0081 EQUIP
«TITL EQUIP
+ENT E@00@,E0,E1,ETREC

+ENT ETEND
«ENT ETENT
JENT E2
LENT ETLEN
CITITR +DUSR Ast@l
209111 +OUSR Isitt
999123 LDUSR 83123
900124 LOUSR Tai24
TTIYE (OUSR Usg25
owoi127 +DUSR wWm127
TTICE] ,DUSR Ex1@5
200132 JOUSR 23132
¥ee116 +OUSR N2116
208117 (OUSR Ougy7?
200207 +DUSR RT12135,
200007 +OUSR BL1s7,
200010 (DUSR BL216,
200117 «DUSR PT{s0
000116 +DUSR PT2aN
000064 «DUSR DDOLINEs3#16,¢4
200064 .DUSR 1BM284833¢16,¢4
000064 (OUSR IBM2260Wa3+16,¢4
200005 +OUSR IBM185313
000006 .DUSR D290@s6
e0eve? .DUSR 1BM274117
200064 JOUSR 12741u3¢16,¢4
deee2t +DUSR ZASC1a1e16,¢1
veee26 +OUSR ZASCEn1416,6
veend2 +OUSR EASC202¢16,¢2
200945 sDUSR EASCS82¢16,¢5
200005 JTXTM 8
o 2REL
oNREL
200201402425 ETENDT EQEND-ER@00
200011920103 ETRECT 20000¢"E JUSED TO WRITE ET ON TAPE
200021001046 £9999=ERRUR ¢4
000031000119 "y
000¢4'000005" Y
EQ0001
E01
eeees'eveand) JETRO
200061041524 NCe256,4"T JETYPE
000071000000 e, 1ET10
900102200000) JCHILD
200111000ad2! 3 ILINK
ec¢e12'e00000) JPARNT
900131900156 110, JETRAT
249141000000) JETQBP
200151001057 EON2 JETEON
20016'000000) JETRSP
900171900000) JETPAD
20920'000000) IRRING, PRING
000211000037 2+256,437 JETLGA, ETLGN
900221913111 2ASC6#256,¢1 JTERMT, STATI
000231904419 11+256,410 JPORTO, PORTI
000241200000 00256,40 JSPRTO, SPRTI
290231290200 20256,+186 JSUTAD, ETIND

175

9902 EQUIP
900261004132
9992710004900
20030200000
PA031'000YRe

EQENDI
EL1
200321000000
20331042123
0003410200016
2003512000009
2903610200057
0037 1000000
0004021200156
000411000409
000421001065
20043'200¢00
000441200000
200451000000
200461290037
200471221111
0p250 1024450
200511000401
ppes21997400
2005319041093
20¥54'000000
0003319000080
0008561008 RR0
E21
200571000000
0P8 1952131
000611000001
00062'00240900
00063'¢002104"
00064'000009
200681200207
2006610000400
2¢e67100187 3!
000721000000
PUa71'000008’
000721000000
000731290037
000741032111
200751021442
20761200401
800771017200
20169'003517
201011020071
20102'960066
AR T REN . PA
EMN
001041000002
201931932131
991061000002
20137 '200009
20110'0901311"
2d111'0020000
90112'02¢40207
091131000008
2011410011014

8,%256,¢2
191018248870
1,~1*1B2+087+0
)

]
"De256,¢4"S
14,

2

E2

0
0110,
0
EOM3
")

[*)

"]

Be256,+37
EASC292536,+1
51¢256,+59
19256,+1
15,9256,+2B8
8,%206,+E
1,1%182+0B87+9
1,°101B2+0B87+0
2

"]

NTe256,4MY
i,

2

£3

[}

RT1

"]

EOM4

')

')

@

00256,+437
127419256 ,+%
430286,442
10286,+1
30,9256 ,+088
BL1#236,+PT1

2,m1*1B2e80, 8747}
4,71%1B2+00,B7+66

D066A

)
"Te256,4"Y
2,

)

Ed

)

RTY

)

EQMS

176

JBYTEL, PARTY
JETDIO
1£T000
JETDOA

JETR®
JETYPE
JETID
JCHILD
JLINK
JPARNT
JETRAT
JETQBP
JETEOM
JETRSP
JETPAD
JRRING,PRING
JETLGA, ETLGN
JTERMT, STATI
JPORTO, PORTI
JSPRTO, SPRTI
JSUTAD, ETIND
JBYTEL, PARTY
JETDIO
JETDOV
JETDOA

1ETRO
JETYPE
JETID
JCRILD
JLINK
JPARNT
JETRAT
JETQBP
JETEOM
JETRSP
JETPAD
JRRING,PRING
JETLGA, ETLGN
JTERMT, STATI
JPORTO, PORTI
JSPRTO, SPRTI
18UTAD, ETIND
JIBYTEL, PARTY
JETDID
JETDOO
JETDOA

JETRO
JETYPE
JETID
JCHILD
JLINK
JPARNT
JETRAT
JETQBP
JETEOM

9003 EQUIP
001151200000
P0116t00004¢
Q91171000000
99120000037
gdfa1'032111
091221021442
P04§23'291402
PB1241'317 440
205251903817
90126021071
9041271262066
CERRUALT RRY A

E41
90131 1009009y
V1321052131
904331000003
2013419000809
2813510004136
801360040 AY
001371800297
dVi4p'tavevee
POi141'00610851!"
PA142'9000V0
001431300000
001441000000
9014510406037
Buiaglyed211
V01471021442
V01501001400
eu§5itv20000
001521003847
041531022087
001541064066
901551441107

Edat
001561000000
8157105213
P16V '0000V04
0016110000200
99162'900203!
2016d'000000
09164000207
2vi1651¢00000@
90166'0a10854"
00167 '000000
09470'dvovo0
90471'000000
e@172'080037
P9i7d31032414
00§74'021442
90475'002004
e0§76'016400
Q8177'203517
00200023071
Qu2p1'066066
90292031107

E132
90203'000000
P0204'9521314

)

0e256,+37
127431+286,+1
430256,042
24256 ,+2
31,v236,+088
BL *256,+PTY

2,=1+182402,B7¢71
4,~1+182404,B7+66

D066A

)
NTe256,4"Y
3¢

)

EdA

¢

RTL

)
EOML
2
)

"]

0¢256,+37
127419256,+1
43¢256,+42
3¢256,+3
32,9256,+¢88
BL19256,¢PT}

2,=1v182+04 ,B7+7
4,-101B2+08,B7+66

0066A

%]
"Te256,¢"Y
4,

"]

E13

%]

RTY

"]

EOML

]

"]

"]

00256,+37
127419256,+1
430256,+42
42256 ,+4

29,¢236,+068

BL1i#2536,+PT}

2,219182+06,B7+71
4,9191B2+12,B7+66

00664

)
PTw256,+"Y

177

JETRSP

JETPAD

JRRING,PRING

JETLGA, ETLGN
JTERMY, STAT]

JPORTD, PORTI

JSPRTD, SPRTI

1SUTAD, ETIND
IBYTEL, PARTY
1ETDIO
1ETDOO
JETO0A

JETRO
1ETYPE

1ETID

J1CHILO

JLINK

JPARNT

JETRAT

JETQBP

JETEOM

JETRSP

JETPAD
JRRING,PRING
1ETLGA, ETLGN

JTERMT, STATI

JPDRTO, PORTI

1SPRTO, SPRTI

J8UTAD, ETIND
IBYTEL, PARTY
JETOIO
JETO000
JETOOA

JETR®
JIETYPE

JETIO

JCHILD

JLINK

JPARNT

1ETRAT
JETQBP
JETEOM
JETRSP
1ETPAD
JRRING,PRING
JETLGA, ETLGN
JTERMT, STATI
JPORTD, PORTI

1SPRTO, SPRTI

1SUTAD, ETIND
IBYTEL, PARTY
JETDID
1ET000D
JETDOA

1ETRO
1ETYPE

ope4 EQUIP
ep2p5'000005
P9206100v900
002071000330
fe210'099v00
ee21i'evnie?
P¥212'000000
90213'091051!
Pp214'000000
pp215'epeone
PuR16'000040
0v217'000037
Pe220'03211}
002211031442
PP2R22'160R405
PP223'020400
0¥224'003517
00225102497
202261470466
p@227'001110!
E14%
Pv230'000000
20231105213}
002321000006
20233 '000000
PY234'000259"
vY2351000000
0p236'2p0207
202371000000
op240'001@51!
P0241'000000
¥e242'000000
00243000000
002441000037
202451032111
002461021442
20247003006
o02%0'021009
0¥201'003347
epada'edle7y
202631072066
op254t001110!
EL18s
Pe2551000000
992061933131
pp2s7 1000007
002601000000
ep2611p00302!
00262'000000
pgasldrenezn’
002641000000
00265100105
Pe266'0001000
002671000009
002701000004
00271'000037
p¥272'0321114
00273'0R1442
202741003407
pe275'021400

00256,+37
127410256,+1
439256,+42
5¢256,+5
33,¢256,+0B8
BL1#256,¢PT4
2,-191B2+98,87+71
4,-141B2+16,57+66
00668

"]
lOT'256'¢"Y
6,

e

EL5

"]

RTY

0
EOMY
0

)

@

@e256,+37
12741¢256,+1
43+256,942
60256,+6
34,4256,+0B8
BL19256,+PT4
2,7101B2+14,B7+7}
4,m101B2+20,87+66
DO66B

("]
"Tw256,+"Y
74

[}
E16
[}
RTY
[
EOMI
[}

"}

[}

00256,+37
127419256,+1
430256,+42
7¢256,¢7
35,+256,+08B8

178

1ET1I0
JCHILO

TLINK

JPARNT

J1ETRAT
JETQBP
JETEOM
JETRSP
J1ETRAD
JRRING,PRING
JETLGA, ETLGN
JTERMY, STATI
JPORTO, PORTI

JSPRTO, SPRTI

JSUTAD,
IBYTEL, PARTY
JETDIO
JETO0O
JETDOA

1ETRY
JETYPE

1ETIO0

JICHILD

1LINK

JPARNT

JETRAT

JETQBP

J1ETEOM

JETRSP

JETPAD

JRRING, PRING
JETLGA, ETLGN

JTERMTY, STATI

JPORYD, PORTI

1SPRTO, SPRTI
18UTAD, ETINO

JBYTEL, PARTY
JETOID
JETOOD

J1ETDOA

J1ETRO
J1ETYYPE

1ETIO

JCHILO

JLINK

JPARNY

JETRAT
JETQBP
JETEOM
JETRSP
JETPAD
JRRING,PRING
JETLGA, ETLGN
JTERMT, 8TATI
JPORTO, PORTI

18PRT0, SPRTI
1SUTAD, ETIND

00485 EQUIP
002761903517
202771426871
2030010740686
LR BRE-T RRSY I

E161
e0de2'000000
293031052131
[T RUERE-TI-TRY]
e0doS5'a90000
o@3eb1900327!
903@7'000000
eadiereoege’
CPRRRRL LTI
e0di2'00lasy!
093431000090
203141000009
e0315'000000
203161900037
203171232111
003201021442
203211004010
2032216822000
203231003517
003241902707
203251976066
oed20'001110"

E171¢
203271900000
003301082131
CERRRRET TR
203321000000
203331000354
003341000008
203351000207
203361000000
003371001051
90340000000
e0d4i'000000
903420200000
00343'0000Y7
003441032118
80345022444
00346100040}
003471022400
CTRELAET RE-IR4
903511030071
203521960067
20383001411y

E181
20334000000
00385105213}
093561000012
20357 1000000
093601000401
203611000000
203621000247
203631000000
20364'201951"!
003651000000

BL1*256,+PT} IBYTEL, PARTY
2,-1+182+12,B7+7} JETDID
4,71*182+24,87+66 1ETDOD

0D668B JETODDA

[*] JETR®

"Tw286,4%Y JETYPE

8, JETID

"] JCHILD

E17 JLINK

0 JPARNT

RT1 JETRAT
) J1ETQBP

EDM1 JETEDM

Q JETRSP

[*] JETPAD

("] JRRING,PRING
Qu256,+37 JETLGA, ETLGN
127419256,+1 JTERMT, STATI
43+0256,442 1PDRTO, PDRTI
8,9256,+8, JSPRYO, SPRTI
I6,%256,¢0B8 JSUTAD, ETIND
BL1#256,+PT1 IBYTEL, PARTY
2,=17182+14,B7+71 JETODID
4,=1»1B2+28,87+06 JETDOD

pD668B J1ETDDA

] JETRO

"Te236,+MY JETYPE

9, JETID

) JCHILD

E18 TLINK

] JPARNY

RY1 JETRATY
0 JETQBP

EOM} JETEOM

] JETRSP

0 JETPAD

0 JRRING,PRING
0#256,+37 JETLGA, ETLGN
127419256,¢1 JTERMY, STATI
45+286,+44 JPORTD, PDRTI
1¢4256,+1 18PRTD, SPRTI .
37 ,+256,+8B8B JSUTAD, ETIND
BL1*256,+PTY JBYTEL, PARTY
2,7171B2¢16,87+71 JETD1D
4,n1v1B2400,B7+67 1ETODD

DD674A JETDDA

0 JETRO

NTw256,+"Y JETYPE

10, JETID

[} JCHILD

E19 JLINK

(] JPARNY

RT1Y JETRAT
) JETQBP

EOMY JETEDM

(] JETRSP

179

0évs8 EGUIP

00366 1Y0AVVY ? JETPAD
003671000900] JRRING,PRING
00370'000037 0¢256,437 JETLGA, ETLGN
283711032111 127419256,+1 JTERMT, STAT]
003721022444 459256,+44 JPDRTO, PORTI
23731001002 29256,+2 JSPRTO, SPRTI
003741023000 38,¢256,+02B8 JSUTAQ, ETIND
90375003517 BL1%256,+PT} JBYTEL, PARTY
203761231671 2,71%1B2+18,87¢71 JETO1ID
9037710620067 4,-1+1B2+04,87+67 JETODD
9040 TURIL11Y! 00674 JETDDA

E19¢
004011000000 0 JETRY
904021052131 HTw256,4MY JETYPE
004031000013 11, JETID
004041000000 ¢ JCMILD
P43 100v426! E20 PLINK
D04061000000] JPARNT
00407 1000207 RTY JETRAT
004101000000 0 JETQBP
041110010311 EDMY JETEOM
004121000209 (] JETRSP
004131800040 0 JETPAD
004141000000 0 JRRING,PRING
004151004037 0e236,¢37 JETLGA, ETLGN
004161032111 127419256,¢1 JTERMY, STATI
004171422444 43¢236,+44 JPDRTO, PORTI
004201001403 3¢256,43)SPRTD, SPRTI
004211023409 39,0256 ,+088 PSUTAD, ETIND
00422'0035347 HBL1%236,+PT} JBYTEL, PARTY
004231832871 2,71%1B2+20,B7+7]) 1ETOIOD
004241064067 4,71%1B2+08,87+67 JETDOD
ad425708111¢! 0067A JETO0A

E2¢3
004261000909 ¥ JETRO
004271952134 "Tw236,¢MY JETYPE
204301000014 12, JIETID
¥04311000000 "] JCHILD
V043210004331 E21% JLINK
004331000000 0 JPARNT
004341000207 RT1 JETRATY
0043510004000] JETQBP
2243610010543 EDM1 JETEOM
904371200099 ? JETRSP
004401002000] JETPAD
004411200009 0 JRRING,PRING
00442'000037 D0236,+437 JETLGA, ETLGN
224431032111 12741 %256,¢] JTERMT, STAT]
P04441022444 45%256,+44 JPORTO, PORTI]
004451002004 40256,+4 I1SPRTO, SPRTI
004461024900 40,9256,+988 1SUTAD, ETIND
004471083517 BL1#256,+P Ty IBYTEL, PARTY
004501033071 2,~191B2+22,B7¢71 JET0ID
804511066067 d4,~1%1B2+12,87+07 JETD0D
20432'0011114"! DD67A JETDOA

E211t
294331200009 ? JETRD
004541052131 HTe236,e"Y JETYPE
094551200045 13, JETID

180

00e7 EQuUIP
294561200000
994571208500
90468000009
00461000207
V04621020000
Qd4063'001051!
0046410000080
2946531000000
204661000004
0046710220037
3947681032111
204711022444
004721002485
004731024404
004741203317
204731234074
004761870067
204a77'201112!
E221
0230w '2000020Q
00301'052131
0v3v2'800016
203031200000
905041000525
2950518800890
00306'000207
0e507 1020000
vo318'201031!
023111000000
003121000000
9035131800000
00514000037
293151032111
005161022444
003171903006
00320'02%000
00921003347
209221033071
8p32310972867
00924'0201112"
E231
005231000000
808261052131
9052718020017
2053210000200
293311000552
00332'200000
0035331000207
20334000000
209335100195%!
003361000000
00537 12000082
29540'0200900
203411000037
sa842'832111
005431022444
203441203407
003451023400
203461203547

0 JCHILD

E22 JLINK

@ JPARNT

RTY JETRAT
e JETQBP

EDM} JETEQOM

2 JETRSP

e JETPAD

[JRRING,PRING
B0256,+37 JETLGA, ETLGN

12741+256,+1 JTERMY, STATI1
454256 ,¢44 JPORYO, PORT]
302368,+5 }SPRTO, SPRTI
41,9236 ,9088 JSUTAD, ETINO
BL1*256,+PTY JBYTEL, PARTY
2,219182+24,B7+71 JETDID
4,9191B2+16,87+67 JETDDD

00678 JETODA

[} JETRO

"Te256,9"Y JETYPE

14, JETID

[*] JCHILD

E23 JLINK

[*) JPARNTY

RT1 JETRAT
[} JETQBP

EOMY JETEOM

"] JETRSP

2 JETPAQD

2 JRRING,PRING
00296,+37 JETLGA, ETLGN
12743%256,+1 JTERMT, STATI!
452256 ,+44 JPORTD, PORTI
62256,+6 }SPRTD, SPRTI
42,+236,+088 JSUTAD, ETIND
BL1+236,+PTY JBYTEL, PARTY
2,71v182+26,B7+7 % JETOID
4,=1*1B2+20,B7+67 JETDOD

poezB JETDDA

[} JETRO

"Te256,+"Y JETYPE

15, JETID

"] JCHILD

E24 TLINK

[} JPARNY

RY14 JETRATY
2 JETQBP

EOMY JETEOM

2 JETRSP

(] JETPAD

[*] JRRING,PRING
0e256,+37 JETLGA, ETLGN
127419286,+1 JTERMY, STATI
45+256,+44 JPORTD, PORTI
7¢256,%7 1SPRYD, SPRYI
43,0236,+088 JSUTAD, ETIND
BL10236,+PTY JBYTEL, PARTY

181

9008 EQUIP
¥a547103607 1
d¥550'1074067
#9951 '8e1112!

£E241
905521000000
20353103213¢
203341000020
995551000000
0e356'090577!
203571000000
203601000207
033611000000
213621001831
803631800000
203041000000
2030510000800
003661000037
2489671832111
205701022444
083711004030
0057210260800
203731283517
8057418378714
¥a57510876067
¥e376'avi1112!
£8:
9253771000008
2060V 1046116
20601'0020053
20602'000624!
V909080000
006041800008
0060510045348
886061000000
2e6v7 10810851
2061019000800
226111000000

2061210002300
206131000037
2061419321114
206151815031
886161008009
206171025408
P0620'004116
86211000008
B¥6221000000
20623'000000

g6
206241000000
006251241516
206261000006
906271000676
206301000651
08631000977
2063210045349
206331000000
086347201051
206351000000
206361000400

2,-1*1B82+28,87+7}
4,-1%182+24,87+67
DU678

2
"Te236,¢"Y
16,

")

ES

"

RTY

]

EDMY

[°]

[°)

[°)

Ww236,+37
12741%236,¢1
45+256,+44
8,9256,+8,

44 ,+256,+0B8
BL1#256,+PTY
2,~1%182+39,87+7)
4,21%182+28,87+67
DD678

%]

"Le2586,+"N

S,

E6

[}

)

2409,

)

EOM1

)

)

)

©v256,+37
DDDLINE#256,+1
32+256,+31
Ve256,+0
43,+256,+088
BL2#256,+PT2
1,71%1B2+8B7+9
1,-1%182+887+8
)

@
"Cw236,+"N

182

JETDID
JETDUD
JETDOA

JETRA
JETYPE
JETID
JCHILD
JLINK
JPARNT
JETRAT
JETQBP
JETEOM
JETRSP
JETPAD
JRRING,PRING
JETLGA, ETLGN
JTERMT, STATI
JPDRYTQ, PORTI
1SPRTD, SPRTI
JSUTAD,
PARTY
JETDLID

EYIND
JBYTEL,

1ETDOD
JETDDA

1ETRO
1ETYPE
J1ETID
JCHILD
TLINK
JPARNT
JETRATY
J1ETGBP
JETEDM
JETRSP
JETPAD
JRRING,PRING
JETLGA, ETLGN
JTERMY, STATI
JPDRTD, PDRTI
JSPRTD, S8PRTI
1SUTAD,
JBYTEL, PARTY
1ETDID

ETIND

JETDOOD
JETDDA

1ETRO
1ETYPE
1ETID
JCHILD
JTLINK
JPARNY
JETRAY
JETQBP
J1ETEQOM
JETRSP
JETPAD

Q0P EQUIP
au637 1000004
VU640 1000037
2006411032111
V6421213031
2064312400020
806441247000
2064518044116
206461000009
2W647 1200000
24630120V

206511200000
206321041546
CPCERRETT' '
2006541000775
eeéd3t1p00000
206361000377
206571004549
2066021200009
CELISRUTRULER
296621000000
Bv6631000000
CPLLERECTT T
206651000037
206661232425
0065671015034
206701000004
206711124200
00672'004118
2067312002020
206741000000
0e673'200000

086761240000
206771042823
20720'0200010
207011800000
e@a7v21000723!
007031000024
20704'204540
oe7035'200000
007861001881
2070712020000
ee710'000000
ee711'e00000
20712'000037
20713123211}
207141013031
Q73151000000
007161120000
0074171004416
207201200000
997211000000
va722'000009

207231200000
00724104212
00725'000@014
e0726'000000

E71

E81

E9?

]

0e256,+37
IBM2848+256,+1
329256,+31
Ve256,¢0
116+256,+9B88
BL2#256,+PT2
1,~1¢{B2+9¥B7 +0
1,-1v182+0B87+0
0

2
"Cw256,+"N
7

E1l

)

ES

2400,

)

EDMY
(]
(]

[*]

0e256,¢37
IBM28489256,+U
32¢256,+314
¥ev256,+0
250+256,+088
BL2¢256,+PT2
1,°101B2+0B7+0
1,-10182+087+0
[

e
NO%256,+"8
8,

)

€9

E6

2400,

2
EDM}
2
[}

]

0e256,¢37
IBM22609256,+1
320256,+3)
0e236,+0
240+256,¢088
BL2¢256,¢PT2
1,-1*1B2+0B7+0
1,»1¢1B82+QB7¢0
]

)
"O*256,+°8
L

)

183

JRRING,PRING

JETLGA, ETLGN

JTERMT, STATI

JPORTO, PORTI

1SPRTO, SPRTI
)SUTAD, ETIND
IBYTEL, PARTY
JETOIO

JETODO

JETDOA

JETRO
JETYPE
JETID
JCHILD
JLINK
IPARNT
JETRAT
JETQBP
JETEOM
JETRSP
JETPAD
JRRING,PRING
JETLGA, ETLGN
JTERMT, STATI
JPDRTO, PORTI
JSPRTO, SPRTI
JSUTAD, ETIND
JBYTEL, PARTY
JETDID
JETODO
JETDDA

JETRO

1ETYPE

1ETID

JICHILD
JLINK
JPARNT

JETRAT
JETGBP
JETEOM
JETRSP
JETPAD
JRRING,PRING
JETLGA, ETLGN
JTERMTY, STATI

JPORTO, PORTI

)SPRTO, SPRTI

JSUTAD, ETIND
IBYTEL, PARTY
JETO1D
JETDOD
JETO0A

JETRY
JETYPE

JETIO

JCHILD

010 EQUIP
0u727'046759!
007301000624
207311004540
007321000000
Pv733'e01051!
297341000000
08735'000000
2u736'v00Peu
ey737 1040037
eu7441032111
207411015031
0¢742'000000
007431128400
00744'004118
Pu743'0v0000
0¥7461080000
0u747'0060000

ev750'0000009
007511850124
0e73521000012
VY7531 00v0008
0075410220008
007551000624
00736'000226
287371000000
AT AT RCERN
¥e764'0v0008
ve762'n00003
¥R7631000000
VO764'P00BY?
007651002525
0¥766101304¢
A0787 10000080
0Q@77¥1121000
0u771'0044186
08772'00000¢
e@773'000000
Wi774'veve008

0@775'0000480
007761042123
00777'000013
01000'000000
Q100§ '001022"
01002'000654!
01903'004540
210840000800
01085'090103Y!
910061000000
21807 'v00400
81010200000
P1011'000037
e10§2'032129
01013'015031
21014000000
210151122000
01916094116
p1e17'1200000

Eld:

E11%

E10

ES

2400,

("]

EOM1

]

4]

)

@e256,+37
1BM22609256,+1
32#256,+31
29256 ,+¢
2414256 ,+9088
BL2%256,+PT2
1,~19182+8B7+0
1,-1#1B2+087+0@
"]

@
"Pe256,+"T
1o,

]

[

E6

159,

@

EOM1
°
e

%]

00256 ,437
IBM1053#256,+U
32+256,+0
09256,+0
242¢256,+088
BL29256,+PT2
1,=1*182+887+0
1,-1+1B82+0B7+0
"]

]
ND*256,+"8
11,

)

E12

E7

2400,

)

EOMY

)

]

"]

Be256,437
IBM226809+256,+U
320256,+31
09256,+4
2440256 ,+088
BL2#256,+PT2
1,~1*1B82¢887+0

184

JLINK

JPARNT
JETRAT

JETGBP
JETEOM
JETRSP

JETPAO
JRRING,PRING
JETLGA, ETLGN

JTERMT, STATI

JPORTO, PORTI

JSPRTO, 8PRTI

JSUTAD, ETIND
JBYTEL, PARTY
JIETDID

JETDOD

JETDOA

JETRY

JETYPE

JETID
JCHILD
JLINK
JPARNT
JETRAT
JETQBP
JETEOM
JETRSP
JETPAD
JRRING,PRING
JETLGA, ETLGN
JTERMT, STATI
JPORTD, PORTI

}JSPRTO, 8PRTI

1SUTAD, ETIND
JBYTEL, PARTY
JETDIO

JETO000

JETOO0A
1ETRO

JETYPE

JETIO
JCHILOD

JLINK

JPARNT

JETRAY

JETQBP

JETEOM

JETRSP

JETPAD
JRRING,PRING
JETLGA, ETLGN

JTERMT, STATI

JPORTOD, PORTI

18PRTO, S8PRTI

JSUTAO, ETIND
1BYTEL, PARTY
JETOI0

0811 EQUIP
01029000000
010211000200

e1022'000We0
010231042123
010241000014
e1023'000000
CRCYLAL P LT
210271000654
210301004540
e18311008000¢
010321091034
2103314004400
a1v34'900000
810351000009
0103618490837
018371832128
010401013431
210411000400
010421122400
91043'0041186
018441000000
010431000308
01046000009

ovve2’
01047000032
210501000023
2105118008037
010521477777
018331177777
0108541177777
e185531177777
8108561177777
910371000012
2106081000809
218611200030
01062'177777
010631177777
0190641177777
010631177777
01066177777
010671177777
e1e791177777
018711177777
018721177777
@10731000037
010741177777
01873177777
010761477777
e1e771177777
eliee177777
o110811'000037
211021000043
0119831177777
a110411777277
811031177777
011061177777
011471000000

E123

99991
LEN
ETENT!
ETLEN!
EOML

EOM213

EQMJ?

EOM4:

EOM3

D066 Al

1,~191B2+uB7¢0
("]

)
"De236,+"S
12,

2

]

E?

2400,

L

EOML
(4
e

')

0¢236,+37
18M2260¢236,+U
32+2536,+31
0e256,+0
2494256 ,¢088
BL29256,+PT2
1,~10182+087+0
{.,~1¢1B2+287+0
"

sEQEND=EQROD
E9999-EBVBB/LEN
LEN
3?7
»]
el
-1
]
LY
12
5
h ']
-y
w]
LY
L]
vl
.y
=]
el
el
37
®]
el
L3
L2}
L3}
37
43
L3
o]
el
L3
"]

185

JETOOD
JETDOA

JETRY
JETYPE
JETIOD
JCHILD
1L INK
J1PARNTY
JETRATY
JETQBP
JETEQM
JETRSP
1ETPAD
JIRRING,PRING
JETLGA, ETLGN
ITERMT, STATI
J1PORTO, PORTI1
18PRTQ, SPRTI
1SUTAD,
IBYTEL, PARTY
1ETDID

ETIND

J1ETDOD
JETOO0A

@012 EQUIP
211101000000 DO66BS
e11111900000 D067 A
91112'vv8v6d DO678B1

186

187

EQUIP

vwoL107!
CLRRSTL
Q01141
weg1g2!
LT EN
vBLas!
vBBLBd2!
veuvvd2!
LI YA TR
Pduu775¢
vu1922!
208203!
vovade!
P0u2ss!
VoV3v2!
Boud27!
CLLREY L
200401
a0epas?!
00426
200453
pousea!
200528
e00552!
go0104!
voe131!
vov156!
d0ves7 7!
auvR624!
vwouesy!
Vue676!
Bwue723"
0oi047!
0ai1051"!
vojasy!
P01068!
duia73!
@0g1a1!
gouvoga'
201047
vo1ese!
Q0uv0eatL!
Pope2s

APPENDIX 1V

DATAR Listings

188

USER INPUT: DATAR/B)

BRLIEF -SUNMARY OF wun FT7 PAGE 1

DEY ENHUK MESSaLES

CTu 1'2n alTi0w Tarkt
TYLIS w@w aCTlon TarenN
TYio 114 DEvILE STUPPED
TYlS wv2e¢ aCTICy Ta<EN
CTe w29 ACTICw Tasgn
TYle 229 ACTICw TagEw
TYio Ww2e ACTIUN Tankn
TYIO 04/ BEHIMD SCHEOCULE

- - o - - - - - - -

RILF SumraRY OF RUM FT7 PAGE 2

TERMINALSE B

LLAPSED TIme: 29,7933%8 MESSAGES! 135 RECORDSS 14
CHARACTERS? TOTALY 172 R 1.} Qo 86 UNeR3 []
RECUND TYPESS nt 3 St 11 Qs S
R1) Cs 7 Et 8 UNSOLICITEO! [
TIMES? AVG RESPS 6,06 MAX RESPI J@,62 TERMINALWMAXE TYIO
PEKCENT CPUI 1,89 TOTAL CPUS 56569

SCENANIU INSTHUCTIONS USED?

[] 4 [N} 2] 23 t 8 3) 4
s 1 1 c 4 (I} 22 J 1 21 Qs 2
R 6 w 1 Det 8 Let 2 Qes 3
Ret 4

COmMANDS ISSUED!

Qulr [} 1 START] 3 sus] 3

ENU=OF=FILE

Figure 26. Brief Summary Output Format

189

USLR INPUT: DA'AI’D")

NeviCry wewulilfen ave o Pact H

I via

3

LAY]

17 fv1s

18 ivge

19 L

-— - - -— - -— - - —

WETALLEU St caxt b NN B LY PaGe 2

TEnmslvaL Jub vt P lailyel CTe

NFComy TyerSe ni 3 31 v vl v

“i v [$] 3 €1 H unNsSOLICITEDY L

TIrFens sew w0 v o @ “aAL ME3PI W,er

Ctimraayy Lddur a2

wultl [l [} avawt H ?

Vtlaliey HirmamY b wiho Pl raGe 3
Temclnal b wl sl aTiitnd 1S
wkLowts Tyrest 1 3 3 " o 2
LR 3 te 2 € 2 UNSOLICITEFLD L]
LEImLa: avy mpatd | .00 A2 REIPL I0,0%

SCreanlu LodTwaTine 5 udkl g

(3] ‘e 93 17 Tt 1 1 1 []
c 7 [} Fis J 1 1% v 2 L} 3
vel [Y} ¢ uel 3 ue]

CRunaUS 1330P 03

SYav 1] g [l [l

-— - - -— - -
UETAJLEN Siemady b mun FTP Pauk L]
TExoJoag” Tuba11b L aT fOiND [Z3T]

HELiMy TYPLYT " E) s s a 3
w H (4] Pl [1]] unSOLICLITEDS L}

Time 31 avy Wi $MT w 12 “aa WESPI B, |7

SCenariu fenTeul i luuy UsELT

(K] PR I - (] 2 1] ' 2
v ¢ d 1 ° LN 3 - I L]] 7
' o
Con=anyy lasueul
e] «
- - -— - - - -

POLLU=INe wevICr s adL InaCTfves Pace 3

3 1vg

‘ 1vy

1 LNd

LBV IS (9]

Figure 27. Detailed Summary OQutput Format

190

Ll
sgapunILs PL¥ ot a=t 1 (10
JnTeevee

CI.NT bgell 'e4t

Lt CF 0R8PINNT pralentiates Tue '3 LY T 3
(4%

7¢

.
.
.
.
.
-
.
0
.
[
.
.
.
0
.
.
.
.
.
.
.
.
[
.
.
.
.
0
.
.
.
I
.
.
.
.

-
[
[
Y [0 " [

«t$PONSE T193 13aC8)

Figure 28. Histogram Output Format

191

USER INPUT: DAIM/LITIO/N)
OEvICES weuueSTEL awt | (4114 1

cTe

[131)
TY1S
TS

”

LOGICAL WECLAUY 14 TO 11w

TER~INALS CT»
’ (None for CT®)

LOGICAL WECO®DPY ja) TO QQw
TERMEINALY TYiS

103
242 492 ¢4i #27 e 122 aue 496 272 144 dAr 480 ¢T1 J83 402 960
€72 A3? cou vor S77 Jor san PAg e 244 w32 200 ¢33 970 033 238
W20 ¢34 121 <31 153 122 o0l del 174 220 ¢1) 13 03 3¢

1v4
AaY a¥l vel 22 M6 123 suv wde ¢2d 200 409 PEO P9 0¢ 092 Bde
W73 637 ¥dit o0 AT4 WL 8y due OPY Wew w32 20 433 370 e 238
Aud ¥d4 162 11

143
nar el cdy 224 2ED 123 ¢y déd ARQ 0P wUP Q00U PR 880 RS 087
W74 122 vy end A)S3 151 sev den Adw wdw 32 263 w33 07y 003 242
Pye VT V4D Ve 1) 011 12 dee

140
edv gel vev 423 wue 123 ¢cde Wi duw Cuw vt Q02 POU 000 008 YO
a75 244 wav voe A70 JJu Afe And nin dun w57 203 ¢35 970 002 231
g Pr3 1R4 2vn 012 rey

147
W44 end wev P33 M 121 Ave uln 1dg @3) wde ¥E2 277 36D 800 069
wIT 260 vy ar2 dcv 104 e4¥ 4g4 Wed ¢év w32 263 @33 379 edw 238
F20 ©)4 43 40 142 117 157 142 122 150 d¢1 122 15) 245 117 114
112 a3 135 133 w37 dgw

1090
F4¥ ¢al ses wIA Aed 123 Cda QU4 PQ¢ REW RKR GOP €20 00V OOR 949
al7 w7 edv w62 3¢l 14D Wi duw ¢Nv Cdu ¥32 260 ¢33 @78 wie 238
wuv P3¢ 121 w120 ¥4 W4Y 448 142 112 194 142 122 130 001 122 13)
w43 117 114 112 »wa3 133 133 43P

LOGICAL WECUNLS twl T0 114
TERMINALY TYle

1901
444 dya vav #2T wiee 121 Pdn W38 203 J4) vOP 864 8D DI 0 036
23) 184 wav W6t 334 12T v fpn AR0 faw 252 Jlv 833 027 00 910
W20 ¢34 141 v31 133 122 wol wel 174 420 w1 133 437 wdw

192
WAR VL vl ¥dn vra 12 Qun Jd W8 Jdud 48P BUP Q08 000 000 950
232 238 Awd Mo 433 ¥23 lan ddn wR¢ Jddw 432 J14 ¢33 327 430 010
WA ¥2W 122 U120 w34 121 431 183 122 461 we) 174 w28 013 133 WIIP

1o
242 w42 24v ©)) vuv 122 wer wbe 136 11 90 €82 JD8 OR7 ede vE2
36 200 cev w02 I3 145 Adn Jdy UR 499 932 J14 v35 ¥2) wae w0
€46 ¥D4 W43 4D 142 112 100 142 122 13¢ wd]l 122 13D 44S 117 114
112 €43 193 133 337 evn

11
Wdy PNl AP V2D A1A 12) Pyl Add Ave 490 WAR 900 nOe
330 Jud ver €02 Jar 470 et WEP 90 JWe w32 e k33
dav WES AT¢ AL eud dea

vee go0 962

ERL]

-— P - - -— — =
FOLLO™ING LRVICEYS ARE InaCTIvil PaAGE 2

2 0814

EnDeUFeFLL

Figure 29. Octal Tape Output Format

192

TIVF-ArLAL
PFE 18NS TALK
TYP., S1akT S1AkT
N GrSELIN 6 SEDTY
I 613163 a%12453
0 6614174 £613PFR2
F 6937472 (9756:6
F 73SSE9P 727 S70N
A 71313564 T2TSTIF
nOTTIFASe 1718758
k7774123 TRITSFI
R Tal1269 TE15FM
kR TR1AZP2R T79%Pn37
1 T946Fa T04P11 8
0 791776R 791717
R 7F424P3 Tt5FiRq
k7954767 POALE2S
k AN JA9N P4SF 4T
F POII2TN ®1S)1469
R RORNA2N RI2SF62
R £A5P113 R145154
R R162211 R675966
[»] PA4RR A PA4RrRS 6T
0 9947966 GFETFO7
I 9457483 |77Ne210
1 130F500C 11596517
F 11557477 12706617
K 121175F1 12ABAT14
FNN-OF=-F1LE
P

Figure 30,

USER INPUT:

L1t1 NF b=14 43P

TASY
b g

67f 1407
AS1 660D

697 FTF

497 5F L0
1275911

137592F
114543
TENTTI2
TF16M12

T9nF25Nn
7924r32S
T97154%
1975175
Frymar S
TIUENSE
of-3 -TA
F£126771
P145364
R6T 6176

PTIPI6AA

|

902F 434
110 40P
1152671 ¢

12NFPARDS”

12626925

DATAR/L RECORDS/Q/R $770)

VELIANF 36

2CEN
afif b

r9
£9

79
12
21
29

23
3
117

157

122
hd
122

23
122

R

132
147
14

1ar

14c

SCFNErTN
NawvF

LS b §-1a]
Ma INTSO
Pv.2

MAINTSO
“Z8INTSO
4%
[
MAINT >0
|
MaINTSO
P2
MATINTSO
Fn2

MAINTSO

P s
RN

Pu2

r«2

PACE

nFv
1T

Y1
Y1

V1

Y1
T

14!
1y2
TY2
i

Ty?
TY2
vt
™
Tye
vt
TY2
m
TY?
m

Tye

Y1
TY1
vt

™

™m

v

r0wealocaop US(U

N Yrans 1x.153
4208 FNTFF LOGON

#LOGON 187217
(DESK) T(99) NAC
WAGNER)

&

ENTEF PAa5SSwOF0 FO
F 188217

X

20w

AANAANAAN

00000000

XXXXXRYX

43929P USLUN YNAa
0s

#PASSWORD

(L&
3
53n20a

ENTEE LOGON
TSA217 LOGON IN
PROGRESS AT 161t
31132 ON JUNE
14, 1973

#LOGON TSnJ2¢
W(DESK) T(99)

NA (RAGNER)

#1I_OGOFF
»

F6KX CORE USED

M IGETS
92 1PUIS a
1 018 EXCPS

JOP LOG 73165594
95F7 2.45 CP
U SECS 22.76 E
LAPSEN SECS

TS1217 LOGGEN O
FF TSO AT 16132
19F ON JUNE 14
s 1973

Actual Time Output Format

193

USEX INPUT. DATAR/L/L/S ll‘.‘)

DEVICES WEJUESTRO awt (114]
1 CTe

[T 2 11

13 ™2

13 059

-— -— - - - - -
TIME-INTERYAL LIST 9F RIN2 “ESSALE s« PacE 3

TENPInaL LUENTIFICATILNT CTW

REC Tuang Tasa CPu wESP SCENAR]ID
Tep Tisg Tivg t(mg TieE saet TErY
T T L LT T T 2 2
L] =00 B TadLE I
" ®00 8 TaELE €
" ®00 8 TaSE 8
€ I9ssoy 37 v (3Ta0Y CTR oak
€ e 31 132> Ie€ e20 ACTICS TaxEN
[] 3 a9 3 [T} . Pay
[[224 3 GeE {Ewnce v
€ [e 2482 CeE w2w aCTI0N Targw
3 [1142 - (11 3 CLERRQY v
(4 . Jrd (4 Qek {3Ta0T Tv2 8C2
€ [37 4809 L1 w2y 4CTICN TamEn
! | l , | |
- - -— - - - -
TIME-INTEFAL LisT of Whe »t§544E 18 Paot 3

TERrInaL JUESTIFICATIONT T

PEC Twang Tass CPu ALSP SCENA®ID

TeP Time T~ TI®e TIFE NseE TExt

L] 00 w Tasie |
L] "00 ® TaBLE €
" "00 P Tas.E 3
1] * s69 [sct . wap

L[] 1700 1eB8) 3 L1}

3] 11391 [} L 13} 0

1] [a3s L] oCt L]

(] [] 31 v E.19 8C1

3 L] qve . EI4) X,

3 . ELT . sc1 L]

] 2vave ER 1) o »,2¢ 3C1 1 1Y

3 L] E1 2 [] st o,

[] 351 L] E19) L

L4 [LR8%) 13 0 %,%8 SC1 0lGn On

L} . ars . [I4} 3)016n O™

| | | | | |
TIME-INTERVAL LIST OF NLN2 nESSACE 12 veot 12

TERFInay JUESTIFICATIONT Tr2

PEC T¥ang Tasa CPU MESY SCENA¥LD

TYr Ting Ti=e TIrE TINE nawg TEx?

] 3 W00 8 TesLE I
" W00 ® TenLE €
" %00 ® TamLE 3
[e . sca [N TT]

[] 1e307 1 ove [K2

[[11223 . 3c2 L]

3 [] 3 L] 3c2 L]

L] L] ars v »,v0 3C2

1] L] an [] c2 33,

[T D S .
POLLUING CEYICLS awe INaCTIvEN PaGE n

23 039
[ATTI-L 218 ¥ 4

Figure 31, Time Interval Output Format

194

USER INPUT: DATAR/L/R/0
~
DEVICES REOUESTEQ ARE § PaGE 1
1 cTe
2 0814
3 tyy
4 2
o i Gl e - -
’---"’
[
TIME-RELATIVE LIST 5F 1 MESIAGE 4 ieioy; 12
TERMINAL [0ENTIFIIATIIVG CTE FUMCSTART TIZED: [0;67.953
USER STasT "'5;~3é'c' START EnO SCENAPIO
:55 sr::: ust LLT ADOR NaME 3%
"D » TABLE]
o "D ¢ Tame E
o KGO € TABLE 5
" 74
7 0.e020 6.8079 ISTART Tyi ED274%
: :'3222 :':3;2 6.,6298 6.8334 #24 ACTION TAKEN
UseERr s;nr TInEs NONE
~—---_—--‘——--- - " - - - - e
TIME-RELATIVE LIST OF ? MESSAGE 6 PaGe 4
TERMINAL IDENTIFICATIEN TYV1 RUM START Tirz: g,870%¢
a1
:vsu :na: nnz;w vanen &l scemanre
755 Y::L ust REL AUOR NArE TEXT
"......----.---------.--...----.......-.....---..-.-..--........-
m00 @& TasLg I
. ROD ® TagLE ¢
: ;00 & TasLE s
~3.9151 3.0000 03741 2L0GON 780217 w(DE
s Sasnes e $X) T(9D) NA(WAGNER
)
-3.0233 e.0041 3 €0274y 08LOGON 784217 (D
S SRR S ESK) T(99) NA(WAGNE
")
2,282 e, o001 81 €274y r
: ".2:; x:'g:;; v.2438 9.3806 S¢ €074y wENTER PASSWORO FOR
L ‘ T93217e AAAAALAA
006000€0
) AXYATYXX
4 9.3849 9.3922 S4 E0274y S ZXXXXXXXX
312,438 1200 9l3967 1000033 87 D274l grassuORD
3 lz'alzz 13,4283 =0.6123 3,837 67 ED2741 QIPASSHORD
0 ‘,' ;oa 13.¢328 29,0048 e,2280 79 ED2741 R
R iaiiear 2s.rea 2.2380 12,7333 02 £5274) » 780217 LOGON IN
BESS : PROGWNESS AT 14103

' |

! | |

— - —— > a—
FOLLOWING EVIGES ARE Iia<iIVE

2 DSl4
4 TY2

S ™
NI

EN-OF-FILE

Figure 32,

PACE s

Relative Time Output Format

195

APPENDIX V

Example of teletype on-line listing for preparation of a single

scenario, a real-time emulation, and a single data reduction listing.

196

.

XFER/A SCDR KAP
LOAD SCDS, SIFIXE ANY KXEYe.
R

SSUn KAP TYPE SCENLIR
R
CVT TYPE 3 4

TO CANCEL RUN, USE CONTiCL=-A

R

2P)
HATT
ENTER KUN 1D

TYPE
READY

(STAR1 TA32 TYPE
020 ACTION TAKEN
TCE MAX NAYnng TPN Max 05774
CORE LINKS £31074 CORE AVAIL 127554
DOS REV 15,

R

DATAR/L
END=OF=-FJILE

DATAR TERMINATED
F

197

APPENDIX VI

Timing Samples for Non-Real Time Programs
In Figure 34 where macros are expanded, lower case op-codes
and some special characters do not print. These instructions can

be referenced from Figure 33 in conjunction with the SCENLIB

library macro substitutions.

198

J4FONTN

ALLuCrbLad 14

T e 2y Y 7

ETUKEG KY 5 R10
eew Wl 15 THANSMISSIUN HATE

LUR 3 k3
eee K9 IS TYPING RATE

-R1B RY9 Wit

eR1V¥ KY WH1Y

TYPE (8)

1¢ QeblTon,

11 FIND(es)

12 TYPE(Y)

13 GFURMYAT,F

14 FIND(..)

15 C(3u3 Co3T

16 TYPE(13)

17 UCKREATE 1@ 1@

VWX NSO MW e

18 LLAB1
19 k!
2w S{LAdWZ =

21 ExeCyTL
22 *RY 11 R12
23 /R12 R1v w12
24 LDR 1vov RY
25 eRY R12 R12

26 AOY R12
27 EXeCuTh
28 JLAol

29 LLAB2

32 SLAHY ..
31 TYPE(6)

32 WRUN,F

33 FINUC(..)

34 TYPE(1w)

35 R24us1D CONTINUE
36 TYPe(24)

37 RSIa= WRITE (641060)
38 TYPE(62)

39 R3IYe31u4 FORMAT (§HA 3X4YEQUIPMENT COSTS#/7X,eSUBSYSTEM 1w,
42 TYPe(1d)

41 QLIST 24de

42 PIND(,.)

43 TYPE(14)

44 ULIST J3v

45 FIND(..)

46 TYPE(14)

47 QLIST 422

48 FIND(..)

49 TYPE(13)

50 USAVE,TEST,O

591 FINO(..)

52 C(Su3 INFO

53 TYPE(1Y)

54 UUREATE 1uy 14

55 LLADY

56 R1!

57 SLA34 s

58 EXeCuTe

59 *RY 11 R12

6 /K1Z Kio K12

61 LON luad N9

b2 exY {1/ RIZ

Figure 33. Fortran Cost Scenario with Mactos rot Expanded

199

63 ADY <12

64 tXHCJUTE

6% JLass

v [

67 SLABY .,

68 TYPE(17)

69 ULAVE,INFU,NOSEQ
78 FL(..)

71 TYRE(1w)

72 QELIT,TLST
73 FING(ea)

74 Tyie(»)

75 GRUN,F

76 FIND(..)

77 TYPE(12)

78 QOAVE,TEST,O
79 FLWD(..)

84 TrPr(l12)

81 WQEOQIT,IuFU,3
82 FI"JO(..)

83 fyee(3n)

B4 Rid:!zsivlan) PTR WITH CONTROLLER
85 Tyrc(2L)

B6 R49¢=,01d¢2 PROGRAMMING

87 TYPE(7)

By WLIST,A
89 FIND(..)
9¢ TYPE(14)
91 (QSAVZ,INFC,0,N
92 FlaD(..)
93 TYPE(1lw)
94 QLOIT,TEST
95 FIwvd(.s)
96 TyPe ()
97 URUN,F
98 FIND(..)
99 TYPE (%)
124 UBYE,JYE
E 181 FIND(CUMMAND)
132 TYPE(4)
188 WLUGLJIUT,
184 FING(AT)
135 C(suad OOFTIILY

Figure 33. Fortran Cost Scenario with Macros not Expanded (Concluded)

200

-
o
x
-
z

13)
Ne W RQ
KY b Niv
eee Kiv 1S TRANSMISSION RATE
J WY
esv KRG IS TYPING KRATE
«-Ri¢ KY R11
erRiV kY Klu
R4 © RY
12 R9 o K1Y
11 3 W9
12 =N19 RY K1t
13 ¢k Rl H1D
14 d R9
15 *RY k11 Hid
16 /R11 KIU RiR

OC®NT O AW o

17 {ulle RO
18 *RY k1¢ Kid
19 R1p

20 QELITuN,

21 L LLi2

22 R

23 S LLi2 ..
24 KY ¢ RY
2% KY & w1y
26 3 RO

27 =H1@ RS9 K11

28 *RY K1y riv

29 9 Ry

Js eHS R11 R1Y

31 /RrR1Y KLU K1@

32 180n WY
33 *KRY 1V KW
34 R1U

35 QFORMAT,F
36 L LL2¢

37 R

38 S LL2v ..
39 CISuUn CusT

4@ K4 v KY
41 NS b RiJ
42 3 K9

43 =K1y kY KIg

44 *RY RIV Riw

45 13 K9

46 *RY R1! R11

47 /R11 R10 R1O

48 1¢0v N9

49 «RY Riv R1U
5¢ K13

51 VJCREATE {0 19
92 LLABI

53 RM!

54 SLAw2 =

%5

56 *HY R11 R12
97 /R12 Ri1v R12

58 1200 K9
20%9 ¢NY K12 R12

64 R12

61

62 JLaul

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded

201

63 LLabl
64 SLABL ..

65 RY v K
56 w0 A 1
67 3 Ry

68 =R1Q8 RY R11

69 *RY R10U R1Y

70 6 RS9

71 eH9 R11 K1

72 (k11 K14 R1V
73 191¢ R9

74 RS9 11U R12

75 R14

76 GQGRUN,F

77 L LLJS9

78 R

79 S LLJIY ..
80 R G RO
81 19 6 Riw
82 3 RS

83 ~R1d RY K11}

84 +RY R10 R1Y

85 19 xy

86 *RY K11 R11

87 /R11 R1a RiV

.2} 190 rY

89 *K9 R1¥ R14

99 K1Y

91 R249=15 CONTINUE
92 R¢ 0 RY

93 K9 6 w10

94 3 RY

95 =R{W RY R11
96 *RY Rib Rly
97 24 RY

98 *RY K11l R11}
99 /R11 Riv R10
100 18l Ky
101 *R9 R1p R1A
102 K1Y

1203 R3I3u= WRITE (6,140)
104 RbU ¥ R9
105 R9 6 Q10
1006 3 R9

187 =R1Y RY R1il
108 ¢R9 K1y R1Y
109 02 Ry

11¥ *ky R11 R1il
111 /R11 RiO RiOQ
112 1608 RY
113 *RY R1Y R1O
114 R1W

115 RI9Va104 FORMAT (1HA,3X,*EQUIPMENT COSTS*/7x,«SUBSYSTEM 1v,
110 kB U RY
117 RY © X1y
118 J RY

119 =Riv RY R}
120 *RY Rlv K1Y
121 19 k@

122 oNY 211 Ry
123 /R11 R1V R1@
124 1y RY

K120 ewy wia Ky

Figure 34, Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

202

126 R1Y

127 OLIST 240

128 L LLons

129 nit

1384 S LLo8 .,

131 RQ® 4 RY

132 K9 6 R19

133 3 RY9

134 =R10 K9 W1}

135 *RP K14 R1Q

136 14 Ry

137 oxY R11 R1}

138 /R11 Ribw K1B

139 10138 N9

144 *RY R1¥ R1Y

14} R10

142 GLIST 334

145 L LL/O

144 K

145 S LL76 ..

146 RO ©# K9

147 R9 6 Rid

1448 $ RY

149 =Kiv HY R11}

150 *xY R1® R14

151 16 RO

152 *R9 R11 RII

153 /K1) R1U K10

154 103U R9

155 *RY R1J RY1J

150 R10

157 QLIS| 42¢

158 L LLA4

159 RY!

164 5 LLH44 ,,

161 R8 @ RrY

162 R9 o R1iw

163 3 RY

164 «Kib RY R}

165 *R9 R1b R1Y

166 13 RY

167 *RY r1l R

168 /R11 R1w RiQ

169 19490 RY

{70 +K9 R1Q R1Y

171 Rivy

172 QSAVE,TEST,0

173 L LL92

174 RV

179 § LLv2 ..

176 CISUB INFO

177 RO O R9

178 K9 6 Ri10O

179 3 R9

180 ~Hiy¥ RO R1

181 *R9 Riv R1Y

182 15 R9

184 *KR9 HI11 R1}

184 /K11 R1Q R1Y

189 1V RY
H180 *R9 K19 K10

187 K1

188 UCHEATE 1yl LU

Figure 34, Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

203

189 LLABY

100 R .

191 SLAY4

1we

1903 *RY Rit R12

194 /R12 wig RiZ

19> fedn K9

190 *RY K12 K12

197 K12

198

199 JLAYS

204 LLAJA N

201 SLASS ..

272 NA ¢ RW

203 ity o k1Y

204 3 RY

205 =r14 K9 R

240 *xy Rl K1

207 17 w9

208 *NY NIt R

209 (R11 Ri¥ R

21y 1048 RY

211 wiy R10 K12

21¢ Rid

218 WSAVE, INFO,NQSEQ

214 L LL11Y

215 R

210 S LL11Y ..

217 KB O R9

219 R9 & Rie

219 3 RY

224 =RiU RI Rit

221 N9 R1D N1

222 19 R9

223 *kY K11 RIY

224 /K11 KRiw RlV

229 103¢ R3

226 *RY9Y R1YU Rid

227 R1)D

228 GWEVIT,TEST

229 L LL11S

230 KR!

231 § LL119 .,

232 Rd ¥ RS9

234 N9 6 R1U

234 3 RY

235 =Klu K9 Ki1

236 *NY Riod Rig

237 6 R9

238 *R9 11 Riy

239 /K11 =19 RIW

244 194w RY

241 *X9 R1Y RV

242 Ri)

243 URUN,F

244 L LL127

245> R"!

240 5 LL127 .,

247 Rae @ R9

248 KY o Ri®

249 3 RSO

259 =M1V RY R11
g5 01 vhy K1g X119

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

204

282 12 K9

253 *N9 R11 RI1I =
294 /R11 Riv R10
.29 gy Ry
250 *R9 WHlb R1U
257 K1d

258 QSAVE,TEST,O
259 L LL13S

268 R

261 S LL13S .
262 RY & N9
263 R9 & Nil®
264 3 R9

265 =R10 RY R11
260 *KY R1V R1Q
267 12 K@

268 e¢k9Y R11 R1
269 /R11 R1Q w1
279 1090 K9
271 *K9 R1Y R1V
272 K14

273 GEODIT,INFO,S
274 L LL14J

275 RV

276 S LL143 ..
277 RO © RI
278 R9 6 R10O
279 3 R9

280 =RJ0 R9 R11
231 *R9 R10 R1Q
282 36 R9

283 *R9 RI1 R1Y
284 /R11 R10 RIn
285 1090 RY
280 ¢RY R1Y Ri1Y
287 R1O

288 Rlduzvloey WITH CONTROLLFR
289 RO © R9
294 R9 6 K10
291 3 R9

292 =R10 R9 R11}

0 293 *R9 R1Y R192

294 28 RY

295 *R9 R11 R
206 /K11 R1D k1O
297 1048]9
298 wR9 Rl¥ R1iv
299 R1d

300 R49V3VV1Q0Y PROGRAMMING
3ol KO ¥ K9
302 R9 6 R1Q
323 J R9

304 =Ri8 R9 R
Jad ¢R9 R10 R1V
306 7 R9

387 K9 Q11 R1}
Jul /K11 R1D R1O
309 1420 RO
3168 «RY Riv R10Q
311 K14

312 QLIST,A

313 L LL1bG

Ji4 RM

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

205

315 S LL16G .,

316 Ke % R9

317 Ky & K1V

31e 3 R9

319 =K1 x9 R11

32V ¢RKY R1y R1Y

321 14 KY

322 *K9 RIl R11

323 /K11 R1V RLY

324 1029 KY

323 *K9 R1d K1Y

J2o R12

327 USAVE,INFO,Q,N

328 L LL174

32y R

330 S wL174 ..

331 R4 6 ®9

332 K9 & R1Y

333 3 R9

334 =R1¢ R9 RI11
I'> 335 ¢R9 1Y R1Y

"335 1¢ RY

337 *RY 11 RI1

338 /R11 R1¢ R1lu

339 1090 K9

340 *R9 R10 R19¢

Jay R19

342 WcOIT,TEST

343 L LvL182

344 AV

345 5 LL1B2 ,.

346 Re © R9

347 R9 & R1¢

Jas8 3 R

349 =R10 R9 R11

350 *HY R10 R1Y

351 b N9

352 *R3 Ri1 R1}

353 /R11 Rid K10

354 1090 RY

359 eRY R1¥ R19

350 K1)

357 GRUN,F

358 L L1190

359 !

3680 3 LL199D ..

361 RY ¥ HY

kY-Y K9 6 RiV

363 3 R9

364 =R1d R9 RI11

363 ¢RY R1@ R1Y

360 8 N9

367 *R3 11 R11

354 /R11 R1Q R10
¢ 369 164¢ R9

;7% 370 *RY R1¥ R1Y

37y N1y

372 QBYE,BYE

373 L LL19®

374 r

370 9 LL198 COMMAND

37% LU Y

377 Y 6 R1v

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

206

378 3 %9

379 =R1¥ RY RiL
JBU ekY RIN W14
Ja1 8 RO

382 *RP Riy Wiy
383 /Rif RiQ Riw
Jna 1440 R9
385 *RY RiQ RO
386 RiQ

387 QLJGUUT,

388 L i.lL2@o

389 R

3960 S LL2U6 AT
391 CISus DUFT111Y

Figure 34, Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

207

0sT
X
¢ % kA
WIPRUGRAM COST(OUTPUT, INFO, TAPESnINFO, TAPE63DUTPUT)
49 ¥ Ko
UC weerpPPOLKAM TO COMPUTE COST ESTIMATES wewe
3Y Y HO
QIDIMENSGIUN IN(26),IM(EL), IP(26),10(20)
16 9 KU
QLU 75 ICOUNTa21,2
10 9 3 R
11 07ISumasu
12 17 Y He
13 Urwxkap (L,1) HUMM

CONCULLUN-OD

14 14 Y ro

15 Ul7ranMAT (I6)

16 tH 9 Kn

17 Q0,00 5 {=1,NUMN

18 16 Y Ko

19 QiReAv (5,1) In(l)
20 19 ¥ Kb

21 WrISuMnzIn(I)+1SUMM
2 11 ¥ fio

28 whHjLunNTihuE

24 9 9 Hn

25 07 ISUMN=G

26 17 9 kb

27 QIREAD (5,1} NUMN
28 16 9 Kb

29 QLU 1w I=1,NUMN
30 18 9 Kb

31 QJREAL (5,1) IN(CI)
32 19 9 K6
33 Qi TSuUMH=TH(Y)+ISUNN

34 12 9 ¢t
35 Ql10JCUNTINUVE
36 2n 5 Ko
37 GFIcaSUMsISUMNe] SUMM
38 9 Y ko
39 WPlISumPsna
49 17 9 ko

L GyREAD (4,1) NUnP
42 1o 9 k6
43 QJUU 15 Isi,NUMP
44 1b v Ko
43 UrRtab (5,1) IP(D)
46 Y 9 Kb

47 07ISuMPsIP(I)+1SUMP
43 11 9 R®
49 Q1OoJCUNINUE

50 Yy 9 P8

51 WIISUMGsU

52 17 9 Ko

53 WIREAD (5,1) NUNU
54 lo ¥ Kb

5% QU0 2¢ Isi,NUMU
56 16 ¥ xo

57 WIKEAD (5,1) I0(I)
54 19 & ko

89 QI ISUMNEIGLI)*ISUMD
o 12 v Fo

61 UZ2uwJUUNTIMNUE

02 27 4 hu

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

208

63 QJIITOTAL2IeLSUM+]ISUMP+ISUMG

(.Y} ey ¥ #6

65 NPIF (T aT JEer, 2) GDOTOD L
66 14 § R®

67 OpwWKiTe), 1uuv)

68 64 9 WD

69 UVlVB;rLAMAT (1HA//06X,«PKRELIMINARY COST ESTIMATE®//1X,*SYSTEM Avw)
70 1¢ ¥ K&

71 QIGC TO %9

72 17 9 Po

73 Q9P 4NITE (S,1¢2)

74 32 9 ro

75 Q392:FuURNAT (1HA//71X,«SYLTEM Be)

76 36 v Ro

77 USSVRITL (L,104) TSUMM, TSUMN,IEQSUM
78 55 9 rU

79 0Q1Y4;FURMAT (115,3X,»EQUIPMENT CNSTS#/7X,*SUBSYSTEM (e,
80 39 ¢ wo

81 0 *+5%X,18/7%,*SUBSYSTEM 2¢,5X,18/19%X,+TOTALy,2X,I10)
82 34 9 kKo

83 UJWKITE (6,1v6) ISUMP,ISUMG,ITOTAL

84 37 8 Rg

85 UVIULIFURMAT (1HW,3X,*DEVELOPMENT COSTSw,5X,I10/4X,*0 & Mw
86 44 9 K6

87 U ¢ COSTS*, 11X, 1880//19%X,«TOTAL.,2X,1I10)

88 12 9 Rd

89 W75)CUNTINUE

90 6 9 R6

91 Q)STuP
92 5 @ ko
93 QIEND

94 2 9 ké
95 Qs

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded
(Continued)

209

INFO
1 X N
2 29 9 Ro
AP AR AV RUSDER I LIST M
4 29 9 R6
5 QUUidvY CPU WITH 24K MEM
6 36 9 RS
7 ARV 4ve FH DISC WITH CONTROLLER
8 37 9 R6
9 QUuv1Yvd MAG TAPE WITH CONTROLLER
18 32 9 Ko
11 QUY1geY A1TH CONTROLLER
12 32 9 RO
13 Uudldve TTY WITH CONTROLLER
14 38 9 RG
15 Quulude LINE PRINTER & CONTROLLER
16 39 S Ro
17 Quviulbb 1o ASYNCHRONULUS LINE ADAPT
18 46 9 Rb
19 Que@ivve 1 HISPEED ASYNCHRONOUS LINE ADAPT
20 29 9 RO
21 Uduvuwaz NUMBER IN LIST N
22 22 Y R6
23 Quoladonng 16 MODEMS
24 23 9 R6
25 Qaai1ead MODEM KACK
26 29 9 R6
27 Wvvouvs NUMBER IN LIST P
28 23 9 RA
29 Quuiday ELEC ENGIN
3@ 23 9 Ro
31 QQvlvea MECH ENGIN
32 24 Y R6
33 Qevieody PROGRAMMING
34 26 9 R6
35 Qeuiowe DOCUMENTATION
36 18 9 R6
37 Gedlave T E
38 29 9 R6
39 Quéreud NUMBER IN LIST Q
40 33 9 RO
41 QU210¢e UPERATIONS PERSONNEL
42 29 9 R6
43 Q0vi3%¢ SERVICE CONTRACT
44 34 9 RS
45 Qpuiaou TELEPHONE & DAA LEASE
46 28 9 Ro
47 QuY1vQe TELEPHUNE USAGE
48 27 9 R6
49 (uevane6 NUM IN LIST M»
50 28 9 R6
51 Queiave CPU WITH 8K MEM
52 32 9 R6
53 Qudi08? WITH CONTROLLER
54 32 Y RO
55 Queiegwy TTY WITH CONTROLLER
56 3v 9 R6
57 Quviede 0 LJ=LINE 0IG I/0
58 42 9 R6
39 Quulddd 16 ASYNCHRONOUS LINE AQAPTERS
60 40 Y R6
61 una1202 8 SYNCHRONOUS LINE ADAPTERS
62 27 9 R¢
Figure 34, Scenarios for Fortran Cost Problem with Macros Expanded

(Continued)

210

63 0B0MRUS NUM IN LISY Ne

64 29 9 Wb

65 WYvlpve 2 Hisreel MUUEMS

-1 24 ¥ Ro

67 QUY1avY MODEM CLOCK

68 17 9 K6

69 QeUlvow RACK

70 33 9 Rb

71 Qedtvne PANEL & SPECIAL CKTS
72 4% 9 K6

73 Qovived HISPEEQ SYNCHRONOUS LINE AOQAPTEK
74 20 9 R6

73 QBYLUYLD NUM IN LIST Pe

76 23 9 kKb

77 u¥Blaey ELEC ENGIN

78 23 9 R6

79 QUO10V2 MECH ENGIN

80 24 9 K6

81 Quuldve PROGRAMMING

82 26 9 RS

83 0Qvwvivvw OOCUMENTATION

LY} 16 9 Ro .

85 0QBYiany T&sE

85 26 9 R6

87 QuYeRL4E NUM IN LIST Qe

88 33 9 R6

89 0801260 OPERATIONS PERSONNEL
90 29 9 R6

91 OBMidRY SERVICE CONTRACT

92 35 9 Ré

93 Quuipge? TELEPHONE & OATA LEASE
P4 28 9 RS

95 Qroldw2 TELEPHONE USAGE

906 2 9 R6

97 0=

Figure 34. Scenarios for Fortran Cost Problem with Macros Expanded
(Concluded)

211

Contents of SCENLIB Macro Litrary

Nane Yalue
ALLOCREGS a
BESPTOREG c
ADY ‘ a
BXECUTE e
PREEBUPF £
GTR q
ETOREG b
INPUTPARAN i
LDR 1
BROFP n
PTR 4
BDP q
RANDCN r
TYPEOUT . t

Figure 35. Macro Libraries for Fortran Cost Problem

212

KAPLIB

/R11 Ria Kiw
LOR vy kY
*RY RIW R1Y
ADY R1Y

MEND

1 MUEF FIND(1)

2 L LL3TY

3 RN

4 S LLST 8}

5 MEND

6 MDEF NDEV

7 1

] MENU

9 MOEF TYPE (1)
19 ETOFEG K2 U RY
11 ETUREG RY 6 R10
12 LOR 3 Ky

13 =R1i0 R9 R1

14 eRN KD R1Y

15 LOR S1 R9

16 *RY KI1 R1Y

17

18

19

20

N
co-

Figure 35. Macro Libraries for Fortran Cost Problem (Concluded)

213

